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Abstract— Artificial neural networks have been proven to be learning task, as well as on the selection of the preprocessing
effective learning algorithms since their introduction. These methods that could improve the algorithm’s accuracy. In this
methods have been widely used in many domains, including hanher the supervised learing task approached is classifica-

scientific, medical, and commercial applications with great _. . L . L
success. However, selecting the optimal combination of pre- tion, with the objective of selecting the model that minimizes

processing methods and hyperparameters for a given data set the misclassification rate.
is still a challenge. Recently a method for supervised learning  In this paper the results our participation on #mgmostic

model selection has been proposedParticle Swarm Model versus prior knowledge challenge (IJCNN 2005), [8] are
Selection(PSMS. PSMSiis a reliable method for the selection reported. The method used in this contespasticle swarm

of optimal learning algorithms together with preprocessing - . - .
methods, as well as for hyperparameter optimization. In this model selectio(PSM$ [4]. It is an implementation of a

paper we appliedPSMSfor the selection of the pseud) optimal ~ particle swarm optimizationRSO[12], [11]) algorithm for
combination of preprocessing methods and hyperparameters dealing with the model selection problem. REMSmodels
for a fixed neural network on benchmark data sets from a are represented as particles in the search space. Particles fly
challenging competition: the (IJCNN 2007) agnostic vs prior hqugh this search space using knowledge acquired from
knowledge challenge A forum for the evaluation of methods - . . . . ;
for model selection and data representation discovery. In this prequus |tere}t|0ns. in order to' find the particle (model) that
paper we further show that the use ofPSMSis useful for model ~ Optimizes a given fitness functioRSOhas been already used
selection when we have no knowledge about the domain we are for training a neural network, that is adjusting the weights
dealing with. With PSMSwe obtained competitive models that of the learning algorithm [11]. It has also been applied
are ranked high in the official results of the challenge. with other algorithms for hyperparameter optimization [19].
However PSO has not been applied for selection of pre-
processing methods, learning algorithm and hyperparameter

Many supervised learning algorithms have been proposegtimization of multiple models at the same tinRSMSwas
so far, such as, neural networks and kernel methods [1@kcently proposed [4], and it has been partially evaluated
[17]. These algorithms, together with preprocessing metton the model selection game [6], [9]. In this paper we
ods, have been widely used in many domains, includingppliedPSMSfor the selection of preprocessing methods and
scientific, medical, and commercial applications with greatyperparameter optimization for a neural network learning
success. However, selecting the best combination of learniaggorithm. Experimental results show tHzEMSis a reliable
algorithm with preprocessing methods, for analyzing a givemethod for supervised learning model selection when we
data set, is still a challenge. Even a harder problem is themve no knowledge about the domain we are dealing with.
estimation of the parameters for the selected model, oftenWe focused ourselves on the agnostic track of the chal-
referred to ashyperparameteroptimization. Both difficult lenge, since we believe that agnostic methods are more useful
problems are known as model selection. Traditionally, aghan those using prior knowledge. Mainly in one important
plication’s developers using statistical and learning methodespect: agnostic methods can be applied to many data sets
choose algorithms and tune their parameters empiricallind domains with little (if any) changes. Providing general
commonly by trial and error; or in the best case, by usingurpose methods that can be used by any person, even when
prior knowledge of experts on the domain. However thesshe/he has no knowledge on the domain nor on machine
methodologies are both impractical and inaccurate. learning. On the other hand, prior knowledge based methods

Model selection is concerned with the automated selectiaffer, in general, better models for specific tasks. However,
of the (pseudo) optimal model for describing a dataset. Wiis sort of methods require of having both: prior knowledge
can use prior knowledge of the task at hand for improving thef the task at hand (an expert on the domain) and knowl-
model selection process, or, instead we can develop genegdlge on machine learning methods (an expert on machine
purpose model selection algorithms, caltagnostic” meth- learning), resulting on bbng-runand expensive development
ods. The phrasédescribing a dataset”in the context of process. Nevertheless, accuracy of models obtained by using
supervised learning consist of selecting a learning algorithprevious knowledge should improve models selected with
together with their optimal hyperparameters for a superviseafjnostic methods. We do not sustain that better methods can

be obtained with agnostic methods than with thgmostic
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The rest of this document is organized as follows. In Gina 970 3153 315 31532
the next section, we briefly describe the agnostic vs prior Hiva 1617 3845 384 38449
knowledge challenge. In Section I, tfeSMSalgorithm MG e 8 N T 18
is introduced. Next, in Section IV results ®SMSon the y ABLE |

competition are presented; we rankad on the agnostic
track of the challenge. Finally, in Section V conclusions AT SETS FOR THE AGNOSTIC TRACK OF THE COMPETITIONS], [5],

and future work directions are discussed COLUMNS 3 — 5 SHOW THE NUMBER OF OBSERVATIONS FOR TRAINING
VALIDATION AND TESTING

Il. THE AGNOSTIC VS PRIOR KNOWLEDGE CHALLENGE

The agnostic versus prior knowledge challenge [5] is a Acronym Name 7 Pars.
competition with the aim of assessing the real added value Feature selection
of using prior knowledge into classification problems. There GS Gram-Schmidt 1
are two tracks on the challengd) the agnostic track ;2”” SZN’RCe?iZ'f coef. g
which objective is to evaluate models selected by using no Rffs Random Forest 2
knowledge of the task at hand and preprocessed data2)and SVREC | SVM Rec. elimination 1
the prior knowledge tragkin which participants are provided < Pg‘i‘;ﬁf;fﬁ;lg 5
with the original (raw) data and information about the origin Nmiz Normalize 1
of data; they are required to obtain the best representation sing Scaling 3
for the data as well as the model that best performs on the PCA PCA 1
selected data representation. This sort of competitions are subs Of:;%ig":fgztr‘i?ﬁg?p'e 2
very useful for comparing methods on both model selection Zarbi Dinear classifier 0
and data representation discovery, by providing models to kridge Kridge regression 4
choose from, data and a fair evaluation. Bl\mzs NES;;?I\?;)\:veosrk 2

Details about this contest are further described by Guyon _f Random forest 3
et al [8], in the rest of this section we briefly introduce some SVC SVM classifier 4
aspects of the challenge in order to make this document self Boost Boosting 4
contained. The rules of the challenge are quite simple: the TABLE |l
organizers provide five datasets for classification, together AVAILABLE METHODS IN THE CLOP PACKAGE

with a Matlab®™ toolbox. Then, the task is to select the

model (and data representation in the prior knowledge track)

that achieves the lowe$talanced error rate(Equation (4))

over the five data sets on unseen test data. facilitating the implementation of our methods. The available
The data sets provided for the agnostic track of th&ethods in theCLOP package are briefly described in

challenge [5], are summarized in Table I. The data comEable Il. This toolbox provides two grouping methods: chain

from real domains, and were split into separate trainingdnd ensemble [7], [8]Chain returns a model constructed

validation and test sets. Given the distribution of instancd§om an array of learning sub-models (preprocessing, feature

for the different sets performance on the test set providé&lection and learning algorithms). It is a very important

objective comparisons among models; note that we can rRject for PSMS since PSMS uses this constructor for

trust on the performance results obtained on the validatidfanslating particles intoCLOP models. Another available

data, since this data set may be not representati\/e of tﬁ’@thOd issnsemblé¢hat allows the construction of ensembles

test set. Labels for the training data were made available Ry combining and weighting sub-models.

participants but labels of the validation and test sets were

not provided. Though competitors could obtain immediate Ill. PARTICLE SWARM MODEL SELECTION

feedback by submitting results on the validation set to the The particle swarm optimization algorithnP$Q), was

challenge website; performance on the test set is not reveal&%posed by Kennedy and Eberhart more than a decade ago

to competitors until the end of the challenge. [12]. PSOis a population-based search algorithm that aims
For our participation on the challenge we used @al- 1 5jmylate the social behavior of birds within a flock. It was

lenge Learning Object PackagfCLOP), provided by the qiginally proposed for training neural networks [12], [L1].

organizers and publicly available for academic Iourlo%’SGSAIthough it has been also applied to many other optimization

i R i i e ) X
This Matlab™ toolbox contains feature and attribute Selec'problems too. Mainly in problems in which the features are

tion (among other preprocessing) methods, as well as seveyal,| yalued [16].
machine learning algorithms. This software is object oriented We decided to us@SOinstead of other search strategies
LAlthough it is not mandatory to use th@LOP toolbox, the organizers mamly becausePSO has outperformed other optimization

encourage its use in order to provide objective comparisons strategies _SUCh as hill _cIimbi_ng methods, SimU|atEd annealing
2http://clopinet.com/ isabelle/Projects/modelselect/Clop.zip and evolutionary algorithms in several domains. Furthermore,



as originally proposed?SOhas been used for hyperparame-of PSOfor model selection, that iPSMS As starting point
ter selection and for training neural networks [19], [12], [11]we used the basBSO algorithm with standard parameters
In this paper we are going one step further in this directiothough different parameters, updating schemas and operators
by usingPSOfor the @uasiyfull® model selection problem. can be used in future experimentation as well [18], [16]. In
This task consist of the selection of thpséude)optimal the following we describe core components of tREMS
combination of preprocessing methods and hyperparametenethod, these are: the representation of models as particles
for a fixed learning algorithm. Note that the search spacand the aptitude measure that we will use to evaluate candi-
of this problem is much more larger than the one welate solutions.
have when we want to train a neural network or optimize )
its parameters only. In consequence we must apply mofe Representation
efficient techniques and be willing to spent more time to The problem we approached in this paper is that of
converge. Unfortunately we can not present an analysis sélecting the best model for minimizing misclassifications
complexity and convergence of the algorithm. Though we ai@n a test set. Therefore for applyifSMSin this problem
currently performing a complexity and convergence analysige should represent each candidate model as a particle. In
of the algorithm for the full model selection problem; asPSO particles are represented ds-dimensional numerical
well as a systematic comparison B8Owith other standard vectors. In consequence we represented each modsl a
search strategies for the model selection problem [4]. d—dimensional vecto;, as shown on Equation (3).

PSOQis inspired on the social behavior of biological soci- o
eties, in which each individuapérticle) of the community Po= M passe Pk Mooty eputl - (3)
shares a common goagtting food, for examp)ewith the Where eachM; is a binary-valued element whose value
other members of the populatioswarn). It is assumed that (0 or 1) indicates the absence of presence of methipd
individuals know how far the goal is, though they do notach entryp,,; 1..; represents thé—parameters for method
know the exact position of the goal. j, these sort of elements can have binary or real values,

In PSO each particle represents a candidate solution @epending on the methods’ parameters. Therefore, in such
the optimization problem at hand and it is treated as a poiat representation we have—methods, each with their
in the d—dimensional search space. Each particle adjustespective parameters. Note that in case 1, the problem
its flight (search directioh over the search space based owill be reduced to single hyperparameter optimization for
its own previous flight experience and that of its neighborsmethod/;. For the full model selection problem with fixed
As in most heuristic search algorithms, an aptitude measuneural network as learning algorithm the elements of the
should defined. The aptitude measure should evaluate tharticle representation (using tf&_OP package) have the
proximity of the candidate solution to the optimum. Particle$ollowing codification:
have memory in the sense that each particle is able to know
the best position it has achieved so far. Social behavior Bi = [ S2n fimae, Wmin, 95, fmae . relief, fmae » Wmin
in particles allows them to follow leader particles, that isknum » SVerfe . fmas , standarize, center normalize , center

hiftn—scale , takeig , SUbsample, pp... , balance, rffs ,

the global best solutions according the aptitude measur]e".m  min | DC EXIACt , foaw » NN . units , shrinkage .

Particles adjust their flight trajectories using the following,ujance | epochs ]

equations:
t t—1 Where the elements ioold are binary valued, representing
V5 .= pxvU; . e krik(p; i —x; ) Feakra® i—xi ) (1 . ! .
i = PRV e TPy =i ) s (P i) (1) absence or presence on the method indicated with the label.
Tij = Tij+ 0 (2)  While theitalic elements can be both real or binary valued,

where p is the inertia weight, whose goal is to control the'®Presenting parameters for the method preceding thedn.

impact of the previous velocities over the current 0{7@% standT for neiril network; elemenr;[s followihgy are the_
is the velocity of the particlé in the 5 dimension, at time heural network hyperparameters that we want to optimize.

t. ¢; andcy, are weights applied to the influence of the bes?—he methods we .conS|dered in this work were already
position found so far ;) by particlei and by the best presen'ted on Section Il, see Table Il. For practical reasons
particle in the swarmp, ;. 1, € [0, 1] are random values we omitted some methotisPCA, subsample, Rftsnd Rf.

with a uniform distribution. After the velocity is updated, E_ach vec.tor n .the above codification is used with the

the new position of the particlé in its j** dimension is chain grouping object of thECLOP_ package tp create' the.

recomputed, see Equation (2). This process is repeated pdel represented by each particle. A typical particle is

each dimension of the particleand for all the particles in shown below.

the swarm. Particle = [1, 4, 0.2461, 0.31, 0.4, 0.786, 6, 0,23, 1, 1,0, 0, O, 1,
Using the above described optimization framework we cafy 0 0. 0.693,0.577,0.844, 2, 0, 0, 0, O]

map the model selection problem into a particle’s environ- 4PCA was not considered for reducing computational cost, subsample

ment. In this work we wanted to evaluate the applicabilityvas omitted because in some experiments the minority class was highly

reduced to achieve a zero training error, the rf and rffs methods were not

3The full model selection problem would consist of selecting learningonsidered because we do not used the R software, though we will use this
algorithm together with its hyperparameters as well methods in the future



Model NCV | 5-CV | 10-CV

) ) Baseline 0 0 0
The CLOP model that the above particle represents is shown below PSMSycy | 61.04 64.47 64.44
CLOP-Model: PSMSscv 55.94 52.55 59.41
chain PSMSiocy | 7120 71.20 71.23
{ TABLE Il
1: s2n (fmax = 4, wmin =0.2461), PERCENTAGE OFBERREDUCTION OBTAINED BY THE MODELS
2:standardize (center=1), SELECTED WITHPSMS FOR DIFFERENT VALUES OFk, ON THE
3:ndve, IONOSPHERE DATA SET
4:bias (op=1)
}
B. Aptitude function algorithm. Furthermore, an adequate selectioh oén result

An aptitude measure (or function§(P;) — IR) should [N Speeding ufPSMS depending on the complexity of the
return a real value); for each particleP;, indicating how '€aming machine and for small values fof using ak—CV
far particle P; is from the optimal solution of the problem @PProach can be faster than training the entire data bet
at hand. In our case, the goal is to improve classificatiofPhSegquencBSMScan be less computationally expensive by
accuracy of learning algorithms. Therefore, we can use Sglecting an appropriate value lafAs we will see in Section
classification accuracy measure fdr. There are several 'V @ value of k = 2 represents a trade-off between model
possible options, including mean absolute error, squar@&’mplex'ty' though for experiments using the challenge data
root error, recall, precision and area under the ROC curve€ts we used a value &f= 10.
However, given that in the challenge [7], [8] a particular
measure is used, we adopted it here; although, it would be
interesting to test another prediction accuracy measures. Thdn order to evaluate the performanceR8MSin the model
measure used in the challenge is thalanced error rate selection task several experiments were performed. We used
(BER), which is the average of the errors on each class féhe framework of the model selection game [6], [9] and the

IV. EXPERIMENTAL RESULTS

a data set as defined in Equation (4): agnostic vs prior knowledge challenge [8]. Note that we are
E. 4+ E using the bas®S0in the experiments reported in this paper.
BER=—"F"_"""— 4 Before showing results o0PSMSon the challenge data

sets, results of experiments on a small benchmark data set

Where £, and E_ are the misclassifications rates for thegre reported. We used the ionosphere data set fronvithe
positive and negative classes, respectively. Therefore, tgs| repository [1]. This data set contairB1 instances
aptitude measure could be definedlas”;) = BER,,, that  and a dimensionality o84. We split the data into training
is theBERobtained by model; with particle representation (200 examples) and testing (151 examples) sets. In the
P;. first experiment we evaluated the performance?8MSfor

Note that in order to obtaifBER or any other evalua- ifferent values of. PSMSwas ran for 1000 iterations using
tion measure, for a given model it should be trained firsthe training set, and then we evaluated performance on the
Depending on the model complexity and dimensionalityest set. The simpler classifier available in the CLOP package
of data this process can be very expensive in terms Qfas used, that igarbi. The task ofPSMSis then to select
processing time. In the first experiments performedBB®R  preprocessing methods and hyperparameter optimization for
value was obtained from the entire training set. Howevegych methods. Results of these experiment for different
comparing models’ accuracy using the same data for fi{mz|yes ofk are shown in Table lII.
ting and assessing the model is not straightforward [10], From Table IIl we can appreciate the improvement over
[14]. Instead, on posterior experimentation we calculateg zarhj classifier without any preprocessing. As we can see
the BER using ak—cross validation ¢V) approach . As jmprovements on these set are very large. This reduction is
expected, with this approach the performance of the modeisore evident wherk = 10, thoughk = 2 can be used as
is improved when tested on unseen data [4]. Although the trade off between processing time an accuracy. We would
computational cost increased with the value:ofThis is the expect thatk = 5 resulted in better models though =
main concern wittPSMS as with any other search heuristic.o performed better. However we must emphasize that this

Since when theERis obtained from the entire training setresyits are illustrative only, and we can not generalize due to
and we haver,;..—particles in the swarm and-iterations the size of the data set.

of PSMSare performed the model is trained and evaluated o 5 second experiment we allowdSMS to select
(0size * ) + 0size times. While by usingk-CV the model preprocessing methods, learning algorithm as well as hyper-
must be trained and evaluatéd;.. * [ * k) + 0i-c times.  parameter optimization for the full model, that is full model
Even when the evaluation of each of thefolds onCV'is  gglection. The resulting model is shown in Table V. With
performed on sets of smaller siz¢ (~ 1, with N the size his model aBER on the test set 0f.089 was obtained,

of the data set) the cost 6fSMSis increased, though this

is a common problem of any other population-based searctPAs pointed out by reviewers of this paper



Type Model Data Prep. Parameters
Prep. rel{ fraz=10,Wmin=0.45knum=2 },norm{c = 0} Ada sing(0), std(1), nmiz(1)] w = 5,s = 1.43,b(0),its = 257
Classifier | svc{coe fo—o,degree = 4,gamma = 0,shr. = 0.37 Gina gs(48), sing(1) u = 16,5 = 0.29,b = 1,its = 456
Hiva std(1),nmliz(0) u =5, = 3.02,b = 0,its = 448
TABLE IV Nova nmlz u =1, = 0.2,its = 50
MODEL SELECTED WITHPSMSON THE FULL MODEL SELECTION Sylva | std(0),nmiz(0) sing(1) | w = 8,s = 1.285,6(0),its = 362

SETTING FOR THE IONOSPHERE DATA SET TABLE VI

MODELS AND PARAMETERS SELECTED WITHPSM S IN THE AGNOSTIC
VS PRIOR KNOWLEDGE COMPETITION A NEURAL NETWORK

Data Prep. Classifier Parameters
Ada* slng, std, nmiz NN u = 5,5 = 0.008,its = 373 ALGORITHM IS FIXED.
Gina** nmlz SVC c=0.1,K = pd=5,5=0.01
Hiva™* std, nmiz kridgepost c=1s=1,K=1
Nova** nmlz N Npost u = 1,5 = 0.2,sts = 50
Sylva* std, nmiz NN u = 6,5 = 0.028,its = 359 Dataset CV-BER Ranking
TABLE V Ada 18.53 + —0.93% 4tn
Gina 6.99 + —0.38% 4th
MODELS SELECTED BY TRIAL AND ERROR(*) AND WITH PSM S (*x). Hiva 24.76 © —2.03% 3tk
Nova | 4.44+ —0.70% 5th
Sylva | 0.70 + —0.10% 4th
TABLE VII

which slightly outperformed the best model selected with  gank posiTIONS OF THE MODELS SELECTED WITHPSMS CV
PSMSin the last row of Table Ill, which obtained a test ,ccyracy is ALSO SHOWN THE MODELS FOR EACH DATA SET ARE
BERof 0.085. Note that the classifier for such a model was SHOWN IN TABLE VI

the simpler available. This result can be due to the fact that

in the full model selection task we have a much more large

search space than that we have when a learning algorithm is

fixed. It is possible that runnin@SMSfor a large number

of iterations can result in larger improvements. on obtaining a smaller representation for this data set and

then we will applyPSMSon it.
A. Results on the challenge data sets The best entry obtained at this stage of the challenge

. ia Corrida-final, with overall score 0f0.2857. The rank of
In the model selection game our best entry was ranke

97d by usingCLOP objects only, according the game resultseach model as well as the cross validation error for each

. data set is shown is Table VII. The rank Gbrrida-final
[8], [6], [9]. The selected models are shown in Table Vis 374 in the agnostic track ané'” on the general list.

we obtained this result by combining models selected .
both: PSMSfor the ADA and SYLVAdata sets and manualelOd.e.IS selected witlSMSeven c_n_Jtperformed models from
participants of last year competition. Furthermore, note that

trial and error forGINA, HIVA and NOVA For this stage of . . .
the competition we fixed preprocessing methods and we juvélge C;;IZ C_?Ei?dreersejt;hg :;Zti?gl?smz\éaelllage?eclz?io:\mascr:sw
performed hyperparameter optimization for a neural networRoC <a9€- quasku .
We usedi = 5 when calculatingCV/ in the aptitude function evidence that the use ®SMSin this task can result in robust

and ran thd?SMSalgorithm100 iterations forADA and only ﬁ;%de\ler;:ﬁol\;er_’rﬁZtlg -Il-i\t/)vligln’l ngtelsmsc’)edli(l:steg?/ng%hen
40 iterations for theSYLVAdata set. These models were pvery p'e. ' P Y '

ranked high on that stage of the competition, even when V\\ge are not including a complexitgenalizerfor models in

T SMS This is a very important result since less complex
only performed hyperparameter optimization. Furthermore | fficient than their comolex counternarts
this was our first participation on the challenge, while mosrthOde S are more etiicien P parts.
of the other top-ranked participants already participated the In Figure 1 theBER value for each iteration oPSMS
previous year [9], [8], [2], [15], [13], [3]. Models selectediS shown. From this Figure we can appreciate that for all
with PSMSwere much less complex than those selected Bf the data sets a small number of iterations is needed to
the cross-indexing method of the game winner [15], [9]. Feach a local optimal solution. For SYLVA only 20 iterations

For the agnostic vs prior knowledge competition we al¥vere need for obtaining a good solution, VA andGINA
lowed PSMSto select preprocessing methods and to perforifata Sets the best solution was found at iteration 80. For
hyperparameter optimization for the full model with a fixecfh® ADA data set the minimunBER value was obtained at
neural network learning algorithm (that igyasifull model iteration 250, though it is very likely that at this point we
selection). For this experiments= 10 in the CV. We ran are overfitting the data set.

PSMS500 iterations for theADA data set and00 iterations Results from this Section show evidence th&VScan be

for the HIVA, GINA and SYLVAdata sets. The selecteda very useful tool for full model selection. Its performance
models are shown in Table VI. Note that the modelM@VA is competitive with other interesting methods [8], [2], [15],

is the same as in Table V, this due to the fact that applyind.3], [3]. Moreover, PSMSas an agnostic model selection
PSMSto such a dummy data representation (bag of words strategy can be used by any user and any domain, even when
documents) is impractical. Instead we are currently workingre have no knowledge of the task at hand.
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BER vs iterations for thé\DA data set [9]

V. CONCLUSIONS [10]

In this paper we report results of our participation on
the IJCNN2007challenge. We used a search strategy baset)
on PSO for performing quasifull model selection. The
aptitude function of the search algorithm is based on t
CV error. Results in the challenge show tHASMS can
obtain competitive, yet simple, models for the data sets i3l
which we applied it. Simple models are more useful than
their complex counterparts because complexity is directlyas)
related to computational cost. Although models are simples,
the models found byPSMSare competitive. Furthermore, (15
the main advantage d?SMSis that it can be used by any [16]
user, even when she/he have no knowledge on the task at
hand nor in machine learning at all. A concern with th 17]
current implementation oPSM$ (that is also a common
concern for all population-based search algorithms), is thé&il
it can be expensive to compute. Since it depends on the
models complexity, which in turn it depends on the size andg)
dimensionality of the data set. At the moment we have just
performedquasifull model selection, though we believe that
the advantages oPSMSwill be further highlighted when
experiments on full model selection being performed.

Currently a systematic analysis of complexity and con-
vergence forPSMSis being carried out. A comparison of
PSMS with evolutionary algorithms, simulated annealing,
hill climbing and other widely used search strategies is an

e

immediate step towards evaluating the performand@S¥S
Further work directions are the implementation of a multi-
. TV objective particle swarm optimization algorithm for model
selection [16] and experiments with different parameters for
PSQ
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