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Abstract: Image segmentation has become one of the most important tasks in medical
image analysis, usually being required as the initial step for other tasks. During brain Mag-
netic Resonance Imaging (MRI) analysis, image segmentation provides information for the
measurement and visualization of anatomical structures of the brain. Due to the spatial res-
olution of medical imaging equipment and complex shape of the tissue interfaces in the brain,
a single pixel/voxel in a MRI may be composed of several tissue types; this phenomenon is
known as partial volume-effect (PVE) and the elements affected by it are called partial volume
elements (pv-elements). Typical segmentation techniques are prone to be affected by PVE by
decreasing their accuracies for measuring and visualizing brain structures. To overcome the
challenges produced by PVE, image segmentation techniques must estimate the contribution
of each tissue in a pv-element, or at least to estimate the total amount of each tissue present
in the entire image. This kind of segmentation is referred as Partial Volume Segmentation
(PVS). Standard methods for addressing brain segmentation are based on pattern recognition
models, assuming that each tissue is represented by a particular non-overlapped set of fea-
tures. However, due to PVE, severe overlapping cases among features may be present, which
leads the model to an incorrect segmentation result. To alleviate the described situation,
this research looks for a solution for the PVE problem on brain MRI. The proposed scheme,
based on growing regions methods, unsupervised clustering and fuzzy systems, consists of two
main components. First, a hybrid intelligent model will identify slightly or non-corrupted
information, in order to impose constraints for reducing overlapping among features. In
a second phase, such pre-selected information features will be clustered, in order to identify
boundaries that will represent each class. Classification will be based on estimating tissue pro-
portions in each pv-element on brain MRIs and assign those elements to a single tissue class.

Keywords: Partial Volume Segmentation, Magnetic Resonance Imaging, brain image
segmentation, unsupervised clustering, fuzzy sets.
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1 Introduction

Magnetic resonance imaging (MRI) is a noninvasive medical imaging technique that pro-
duces images from inside of the human body [Jansi and Subashini, 2014]. Commonly used
in medical diagnosis, it is an invaluable tool in medicine [Pham et al., 2000]. Its working
principle involves subjecting a patient to an electromagnetic field, to align hydrogen atoms
in the same direction of the field. Subsequently, a radio-frequency wave is induced, which
disturbs the atoms in such a way that they start to resonate [Buxton, 2009]. The resonance
of such particles is measured by sensors, which send signals to a computer that converts
them into an image called slice. The reconstructed image provides structural and functional
information of the tissues. Given an MRI, one of the first and most important tasks for its
analysis is to segment the image, with the purpose of detecting objects or regions of interest
(ROI). Brain MRI segmentation is an essential task in many clinical applications because
it influences the outcome of the entire study. During brain MRI analysis, image segmenta-
tion is used to analyze the structure of brain tissues and their changes, as well as to detect
pathologies, such as tumors, abnormalities and injuries [Despotović et al., 2015]. Some of
the main tissue classes of interest for brain MRI are cerebrospinal fluid, gray matter, and
white matter [Jansi and Subashini, 2014].

A phenomenon that most affects a segmentation process is known as Partial Volume Effect
(PVE). Soret [Soret et al., 2007] describes two types of PVE, one produced by finite spatial
resolution and other produced by the spatial sampling of the imaging system. This second
problem is known as Tissue Fraction Effect (TFE), meaning that the pixels do not fit the
objects correctly. PVE causes a digital image to be blurred because there are elements whose
gray value is the result of a mixture of different signals [Grupen and Buvat, 2011]. Due to
its composition, mixed elements have properties that relate to more than one ROI. The
usage of inadequate approaches to deal with mixed elements in the process of segmentation
may produce erroneous outputs. Artifacts found in MRI such as noise and PVE, as well
as overlaps of intensities found in brain and non-brain tissues, make it difficult to find a
reliable identification of tissue regions [Shattuck et al., 2001]. This way, the approach that
addresses the image segmentation problem when mixed elements are considered is referred
to as Partial Volume Segmentation (PVS) [Li et al., 2003]. PVS resides on the estimation
of the contribution that ROIs have on mixed elements.

In order to overcome the PVE in the particular case of brain MRI, a number of so-
lutions have been proposed, including methods based on intensity, statistics and machine
learning [Despotović et al., 2015]. Nevertheless, those methods do not work properly for all
types of brain MRI due to intensity variations, ill-defined boundaries, available information,
redundant features, initial parameters, etc. In computational terms, this is still an open
problem, mainly because it is ill-posed, as defined by Hadamard and commented by Mar-
roquin [Marroquin et al., 1987]. Hybrid models are emerging approaches to deal with PVE;
these models combine the strengths of two or more approaches to achieve segmentation with

1



improved results. However, it is required to be careful when combining approaches, because
a wrong choice may lead to sophisticated structures and high computational costs.

2 Main Concepts

2.1 Image formation

Image formation takes place in a physical process where light (photons) interact with
matter, and the radiation produced by this interaction is sensed by a photosensitive device
(e.g. sensor or eye). Reflection, transmission and absorption are the phenomena that take
place when light interacts with matter, and reflectance, transmittance and absorptance are
quantities measured to describe these phenomena [Fairchild, 2013]. These measures are
recorded by a sensor, quantified and finally rendered to construct a digital image. A digital
image is represented by elements called pixels in the case of 2D images and voxels for 3D
images (Figure 1). In this document, we used the term image element (IE) to refer to both
of them. Such IEs have size, shape and spatial location. Its coordinates are commonly
referred as (i, j) for pixels and (i, j, k) for voxels, where i is the image row number, j is
the image column number, and k is the slice number in a volumetric stack. Furthermore,
each IE has a code, which represents the intensity of the physical measure. Intensity values
usually represent the code, frequently corresponding to a gray value in {0, · · · , 255}. The size
of the element determines the spatial resolution [Lalwani and Ansari, 2012]; restricting the
minimum object size that can be detected. This is important because it can help distinguish,
with greater detail, features from an object. However, if the resolution size is high, the time
required to process the image may be long.

Figure 1. Image elements in 2D and 3D space (a) For 2D space images, elements (pixels) are
represented by lattice nodes, depicted as a square and (b) In 3D images, elements (voxels) are
represented with lattice nodes depicted as a cube [Despotović et al., 2015]

2



2.2 MRI fundamentals

Matter is made of atoms, where their nucleus is composed of protons and neutrons, and
surrounded by an electron cloud. At equilibrium state, the number of electrons is equal to
the number of protons. MRI is based on electromagnetic effects in the nucleus of the atom.
In the case of the human body, which is composed of about 70% of water, MRI measures
the behavior of hydrogen atoms; this is because a hydrogen atom consists of just one proton.
Furthermore, the particles are in constant movement. This way, for the hydrogen atom, its
movement is a self-rotation (spin, Figure 2), which has a magnetic moment [Deserno, 2011].

Figure 2. Precession. A spinning proton in a magnetic field.

The above description must be translated from particles to tissues where the spins sum
up to a macroscopic magnetic moment M . Suppose an external magnetic field Bz that is
oriented along the z-axis, where the magnetic moments can align parallel or anti-parallel.
The following component of MRI is a Radio Frequency (RF) impulse [Deserno, 2011]; this
impulse pushes the proton down with a frequency equal to the rotation rate of the proton
(always at the same point of the movement) making it turn horizontally and parallel to
the ground. After RF excitement, an exponential relaxation, the proton restores to its
equilibrium state [Nordenskjöld, 2014]. The stored energy is released as a signal, which can
be detected and transformed into an image. Two independent effects control the relaxation
process:

1. T2 relaxation (spin–spin).- it affects the phase of the spins. For water-based and
fat-based tissues, T2 is in the 40-200ms and 10-100ms range, respectively.

2. T1 relaxation (spin–lattice).- it affects the parallel vs antiparallel alignment of spins.
For water-based and fat-based tissues, T1 is in the 400-1200ms and 100-150s range,
respectively.

The repetition time (TR) denotes the rate of re-applying a sequence of RF, and the echo time
(TE) is the period between a transmission and data collection [Nordenskjöld, 2014], are set
to produce differently weighted images (Figure 3). T1 weighted (T1-w) images are obtained
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(a) (b) (c)

Figure 3. Images collected using different TR and TE combinations. a) T1-w, b) T2-w and c)
PD-w [Deserno, 2011].

if (TE ≤ T2 and TR ≈ T1), T2 weighted (T2-w) images are produced if (TE ≈ T2 and TR ≥ T1)
and proton density weighted (PD-w) images are got if (TE ≤ T2 and TR ≥ T1) [Deserno, 2011].
T1-w include increased anatomic detail relative to T2, T2-w is better for assessing edema and
has generally shorter imaging times and PD-w is an intermediate sequence, which seeks
to combine T1 and T2 characteristics [El-Dahshan et al., 2014]. Meanwhile, on gray scale
imaging, certain tissues will show up as high signal intensity, and other as low signal intensity.
On T1-w images, fluid in the tissues presents as intermediate to low signal intensity, and fat
as high signal intensity. On the other hand, fluid on T2 appears as high signal and fat as low
signal.

2.2.1 Some Brain Components

The cerebral cortex is an outer layer of different brain tissues1. The brain is protected by
the skull bones of the head to prevent brain damage from outer forces. It is surrounded
by cerebrospinal fluid (CSF) and by fatty tissue. The CSF has many functions, it protects
the brain acting as a shock absorbent; as a medium preventing the brain from collapsing
under its weight. It also works as an agent for nutrition transportation across the central
nerve system [Nordenskjöld, 2014]. The cerebral cortex appears grayish brown in color and is
called gray matter (GM); beneath the cerebral cortex or surface of the brain, connecting fibers
between neurons form a white-colored area called the white matter (WM)2. GM surrounds
the brain, but it also has some parts embedded in white matter. WM acts as a connector
between regions of GM, allowing communication between different brain regions. Figure 4
depicts a simplified anatomy of the human brain seen from axial view.

1http://www.livescience.com
2http://www.aans.org
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Figure 4. Anatomy of the human brain (axial view).

2.3 Partial Volume Effect

Photons are involved in many conventional imaging techniques. The difference among
these techniques is the wavelength, energy level and the emission source of the imaged
photons3 have [Fairchild, 2013]. Photographic imaging registers the amount of reflected or
emitted photons in the visible light spectrum. X-ray imaging is used to measure the number
of high energy photons passing through an object. MRI uses photons to image signals coming
from inside the body [Nordenskjöld, 2014]. Regardless of the image formation type that has
been applied, all images may be affected by PVE. Ideally, there would be a one-to-one onto
mapping from tissues to IEs gray values, which determines that the gray value of each image
element represents a measure of a single tissue. Hence, grouping pixels according to their
gray value could represent an object of interest almost perfectly and characterize each object
according to the range of values of its level of gray [Santago and Gage, 1995]. However, due
to equipment calibration, noise, physics of the tissue, quantization errors, and other factors,
the gray value of an IE may be a mixture of measures from different tissues. Because of
this, the range of gray values of many objects overlaps. This problem is called Partial Vol-
ume Effect (PVE), and it may refer to two different phenomena that make intensity values
in images differ from what they ideally should be [Soret et al., 2007]. One possible PVE
is caused by the 3D image blurring generated by a finite spatial resolution of the imaging
system. As stated before, finite spatial resolution refers to the ability of the imaging system
to differentiate two objects. In this case, the image is created using the convolution of the
actual source with the 3D point spread function (the image of a single point object) of the
imaging system (see Figure 5).

The second type of PVE is due to image sampling (see Figure 6). In this case, contours
of image elements do not match the original contours of the object, which is known as
TFE. Therefore, the gray value of some image elements represents the mixture of measures

3The amount of the detected photons by the sensors of the imaging device.
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of different types of tissues. Even with the highest spatial resolution, there would still be
PVE caused by image sampling [Soret et al., 2007], which occurs in the edge of structures.
Furthermore, TFE is bigger if the object has large surfaces (more edge elements). In this
sense, an image may contain two types of image elements:

1. Pure elements : they are usually the elements in the image which represent a single
object.

2. Mixed elements : they are elements not completely occupied by a single object.

Figure 5. PVE due to limited spatial resolution. The real signal (in a) is convoluted with the
point spread function of the imaging system (in b). The result (in c) has part of the real signal
spill-out (blue structure) and it is detected in the neighboring structures. Additionally, the
signal coming from the neighboring structure (red structure) spill-in inside of the structure of
the real signal [Grupen and Buvat, 2011].

Figure 6. PVE resulting from spatial sampling. The ROI is represented with a gray value
of 8 and it is surrounded by a background with a gray values of 1 (a). Sampling with high
resolution (b), taking the weighted average of the original gray values of the ROI and the
underestimation is lower (c). For low resolution (d), the ROI signal intensity underestimation
is larger [Grupen and Buvat, 2011].
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2.4 Partial Volume Segmentation

The goal of image segmentation is to divide an image into a set of semantically meaning-
ful, homogeneous, and non-overlapping regions of similar attributes (intensity, depth, color,
or texture) [Gonzalez and Woods, 2007]. The segmentation result is a labeled image where
each homogeneous region is identified [Despotović et al., 2015]. On the other hand, classifi-
cation is a technique for the assignment of input patterns (image elements) to classes, based
on a similarity rule. As in segmentation, classification divides elements into non-overlapping
sets [El-Dahshan et al., 2014]. Segmentation and classification are related because segmen-
tation implies the classification of each IE, and classification implies the segmentation of an
image into non-overlapped classes. However, both techniques assume that every IE is a pure
element, which causes problems while facing PVE. According to [Niessen et al., 1999], the
misplacing of tissue borders in a 1 mm brain MR image with only a single pixel in each
slice resulted in volume errors of approximately 30, 40 and 60 % for WM, GM and CSF,
respectively.

Segmentation techniques incorporate tools to deal with mixed elements, known as partial
volume elements (pv-elements) [Van Leemput et al., 2003]; for this reason, this kind of seg-
mentation is named Partial Volume Segmentation [Noe and Gee, 2001, Li et al., 2003]. PVE
and PVS have been addressed in various ways in MR imaging literature. The most commonly
used, statistically based model of PVE is the mixel model proposed by [Choi et al., 1991].
This model assumes that each IE in an image is a pv-element whose gray value represents
a weighted sum of random variables, each of which characterizes a pure tissue type. The
goal in this model is to determine the relative fraction of each tissue type present within
each IE. However, Choi’s model requires a significant number of parameters to estimate the
necessary information to classify a single image element. Shattuck [Shattuck et al., 2001]
presented a model where a new set of partial volume classes may be associated with each IE.
This way, pv-elements may be separately identified using existing binary segmentation algo-
rithms. However, an additional estimation step is necessary to obtain the fractional amount
of pure tissues in each IE. Ribes [Ribes et al., 2014] presented a framework based on denois-
ing (anisotropic diffusion) and Markov Random Fields (MRF) to address PVS on breast MR
images. This work showed the importance of incorporating an efficient pre-processing stage.
The main drawback of this framework is the initialization of MRF.

The above methods are based on the intensity distribution of the image. Therefore,
these models are sensitive to noise. To overcome this limitation, another models had been
developed; particularly those based on machine learning and combinations of two or more
different methods (hybrids models) have been developed. A set of features supports most of
those methods. Usually, a set of features, robust against noise and discriminative enough,
supports these methods. Machine learning and hybrid methods attempt to deal with PVE
as a problem of pattern recognition. Because of the lack of labeled training data, a particular
interest has been developed for methods that deal with unsupervised learning.
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2.5 Pattern recognition

Pattern recognition is formally defined as the process where a given pattern or signal is
assigned to one of a prescribed number of classes [Haykin et al., 2009]. A pattern often is
represented by a set of d attributes, this set of measurements is viewed as a d-dimensional
array x = (x1, · · · , xd). The individual scalar components xi of a pattern x are called
features [Jain et al., 1999]. Given a pattern, its recognition/classification may consist of
supervised learning, in which the input pattern is identified as a member of a predefined
class; unsupervised learning (clustering) in which the pattern is assigned to a class that is
learned based on the similarity of patterns. A standard structure of a clustering task can be
described as [Jain et al., 2000]:

1. Pattern representation.- it refers to the number of classes and number of available pat-
terns; the number, type and scale of the features available to the clustering algorithm.
This step depends on:

• Feature extraction.- a set of transformations of the input data/features to produce
new features.

• Feature selection.- a distance function defined on pairs of patterns, in which the
Euclidean distance is a common metric.

2. Pattern proximity.- it refers to a distance function defined on pairs of patterns; a
common metric for evaluating pattern proximity is the Euclidean distance.

3. Clustering.- the process of grouping the input data around a prototype that represents
a single class. The grouping process is based on the proximity of the patterns.

4. Data abstraction.- the process of extracting a straightforward and compact represen-
tation of a dataset. It has the purpose of improving automatic analysis (a machine can
perform further processing efficiently) or it can be human-oriented (easy to comprehend
and intuitively appealing); e.g. the centroid.

5. Cluster validity.- the assessment of a clustering output. The classification error or
simply the error rate is the measure of the performance of a classifier. For example,
the percentage of misclassified test samples is taken as an estimate of the error rate.

Jain [Jain and Dubes, 1988] formally defined partitional clustering as “given n patterns
in a d-dimensional metric space, determine a partition of the patterns into K clusters such
that the patterns in a cluster are more similar to each other than to patterns in different
clusters”. Hard clustering method relates each pattern to a single cluster; where the output
is a set of non-overlapped groups. A fuzzy clustering method assigns degrees of membership
in several groups (each cluster is a fuzzy set of all the patterns) to each input pattern. The
output of a fuzzy clustering can be transformed into a hard clustering result by assigning
each pattern to the cluster with the largest membership measure; an example can be found
in [Ortiz et al., 2013b].
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2.6 Artificial neural networks

An artificial neural network (ANN) is a layered network of artificial neurons. An arti-
ficial neuron (AN) is a model of a biological neuron. Each AN receives signals from the
environment, or other ANs, gather these signals, and when fired, transmits a signal to all
connected ANs [Engelbrecht, 2007]. To achieve good performance, ANNs use a massively
parallel number of interconnected artificial neurons [Haykin et al., 2009]. ANNs models tend
to use some organizational principles (such as learning, generalization, adaptivity, fault tol-
erance, distributed representation and computation) in a network to learn complex nonlinear
input-output relationships, use sequential training procedures, and adapt themselves to the
data [Jain et al., 2000]. ANNs have been used for clustering tasks because some of the attrac-
tive features of ANNs are capable of working with numerical vectors (feature vectors), data
abstraction and competitive learning [Ortiz et al., 2011, Ortiz et al., 2014]. This research
makes use of ANNs to address PVS, particularly by using Self-Organizing Maps.

2.6.1 Self-Organizing Maps

The Self-Organizing Map (SOM) is a type of ANN composed of an input layer (input feature
vectors) and one or more output layers (prototypes) [Kohonen, 2001]. Neurons are usually
arranged in a two-dimensional structure, in such a way that there exist neighborhood rela-
tions among the neurons, which dictates the topology, or structure. The SOM is inspired
by the neurobiological performance of the brain which is always searching for the most rep-
resentative and most economical representation of data and its relationships. The goal of
SOM is to transform an incoming set of feature vectors into a k-dimensional (k = 1, 2, 3)
discrete map and to perform this transformation adaptively in a topologically ordered fash-
ion [Haykin et al., 2009]. The training algorithm for SOM is unsupervised. Training begins
initializing the synaptic weights of the neurons (prototypes). This process can be done by
assigning random values (between 0 and 1) to prototypes. It has been demonstrated by
Kohonen [Kohonen, 2001] that “much faster ordering and convergence follow if the initial
values are selected as a regular, two-dimensional sequence of vectors taken along a hyper-
plane spanned by the two largest principal components of x” (i.e., principal components as-
sociated with the two highest eigenvalues). This method is called linear initialization. After
the initialization step, three processes are followed: competition, cooperation and synaptic
adaptation. These three processes are repeated until the formation of the feature map has
been completed.

1. Competition.- for each input feature vector x, each neuron compares its synaptic
weights wj with the input vector. The neuron with the minimum distance is declared
the winner, also called Best Matching Unit (BMU). The competition process is shown
in Eq. 1:

i(x) = argmin
j
||x− wj||, j = 1, 2, · · · , l (1)
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where l is the number of neurons in the output layer.

2. Cooperation.- the winning neuron excites its neighboring neurons through a topological
neighborhood function, thereby providing the basis for a the cooperation process among
such neighborhood.

3. Synaptic adaptation.- the excited neurons adjust their synaptic weights according to
the input feature vector with the purpose of enhancing response of the winning neuron
to the subsequent application of similar input feature vectors [Haykin et al., 2009]. The
synaptic adaptation of weights is given by equation

wj(n+ 1) = wj(n) + η(n)h(i(x), j)(x− wj(n)) (2)

where h(i(x), j) is the topological neighborhood centered on the winning neuron i and
encompassing a set of excited neurons j, and provides the influence that the winner
has over neighboring neurons. η is the learning rate parameter, it decreases gradually
with increasing time n. This requirement can be satisfied by the following heuristic
recommended by [Haykin et al., 2009]

η(n) = η0exp(−
n

τ
) j = 1, 2, · · · , (3)

where τ is a time constant and η0 is the initial value of the learning rate.

Once the feature map has been completed, the quantization error qe, which determines the
average distance between each data vector and its BMU, and topological error te, which
measures the proportion of data vectors for which first and second BMUs are not adjacent
units, are used to calculated to measure the goodness of the map [Kohonen, 2001].

qe =
N∑
i=1

||~xi − ~w~xi
|| (4)

te =
1

N

N∑
i=1

µ(~xi) (5)

In Eq. 4, ~xi is the ith data vector on the input space and ~w~xi
is the weight (prototype)

associated with the best matching unit for the data vector ~xi. In Eq. 5, N is the total
number of data vectors, µ(~xi) is 1 if the first and the second BMU for ~xi are non-adjacent
and 0 otherwise.
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2.7 Fuzzy sets

In a crisp set, membership of element x in a set A is described by a characteristic function

µA(x) =


1 If x ∈ A

0 otherwise
(6)

Fuzzy set theory extends this concept by defining partial membership. Zadeh [Zadeh, 1965]
formally defined as “A fuzzy set A in U may be represented as a set of ordered pairs. Each
pair consists of a generic element x and its grade of membership function”; that is A =
{x, µA(x)|x ∈ A}. Here, µA(x) takes values in the interval [0, 1]. Fuzzy sets have been used
for estimating the spatial extension of ROIs. Cheng [Cheng, 2002] proposed four types of
representations for ROIs when ambiguity affects the boundaries among them. This kind of
representations are called fuzzy objects and are described as:

• Fuzzy-Fuzzy area.- the object is called a fuzzy-fuzzy object ; the first fuzzy means that
its spatial extent is fuzzy; the second fuzzy implies that its interior is fuzzy because it
contains elements that have been assigned to the ROI with a certainty less than 1.

• α-cut.- a threshold value α is defined with the purpose of delimiting zones in a fuzzy-
fuzzy area. If different α are defined, each value will be called α-cut boundary. These
internal limits are defined to separate elements with different levels of certainty.

• Conditional boundary.- area ROIs are defined as being spatially disjoint in space,
i.e., each element belongs in principle to a single ROI. Although the boundary between
two objects cannot be located crisply, the conceptual model suggests that a particular
location should either belong to only one object.

• Core-transition zone.- when a clear boundary cannot be defined, but there are
transition zones between the ROIs. In the transition zones, no decision is made about
which object might belong to.

Fuzzy sets have been used to overcome the effect of noise and PVE in medical image seg-
mentation [Wang and Chen, 2012, Zhang et al., 2017]. Particularly, Fuzzy C-Means (FCM)
has become a recurrent method for the partition of data into different groups by using fuzzy
sets [Bezdek et al., 1981]. In FCM, data points may be assigned to more than one cluster
depending on their membership degree to different clusters. As a result, this method can
outperform crisp methods in real applications, especially when clusters are not well sepa-
rated, the borders of the clusters are not sharp, and clusters overlap [Budayan et al., 2009].
FCM is based on the minimization of the following objective function

Jm =
D∑
i=1

N∑
j=1

µm
ij ||xi − cj||2, 1 ≤ m ≤ ∞ (7)
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where, D is the number of data points. N is the number of clusters, m is the fuzzy partition
matrix exponent controlling the degree of fuzzy overlap, with m > 1. xi is the ith data point.
cj is the center of the jth cluster. µij is the degree of membership of xi in the jth cluster.
For a given data point, xi, the sum of the membership values for all clusters is equal to 1.

Figure 7. Representation of fuzzy objects. (a) Fuzzy-Fuzzy area. (b) α-cut. (c) Conditional
boundary. (d) Core-transition zone [Cheng, 2002].

2.8 Seeded Region Growing

Region growing also known as Seeded Region Growing (SRG) is a segmentation technique
proposed by [Adams and Bischof, 1994] to extract large connected regions of IEs with similar
features starting from initial points called seeds. SRG algorithm needs n seeds sets S =
{S1, S2 · · · , Sn}. Seeds can be placed manually or automatically, this process is called seeding
and plays an important roll in the performance of SRG because at least one seed must exist
for each region of interest. From seeds, new elements (neighbors) are included in a particular
areaR1, R2, · · · , Rn, if they meet an homogeneity criterion δ(x) evaluated from the gray levels
of the region (statistical moments, parameters of texture, Bayesian approaches), this process
is called growing. The IEs in the same region are labeled by the same symbol and the IEs
in different regions are labeled by different symbols. These set of IEs are called the allocated
IEs, while the others are called the unallocated IEs [Fan et al., 2005]. Let H be the set of
all unallocated IEs that are adjacent to at least one of the labeled regions

H =

{
(x) /∈

q⋃
i=1

Ri|N(x) ∩
q⋃

i=1

Ri 6= ∅
}

(8)
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where N(x) is the neighborhood of the IE. Now, if the unlabeled IE (x) ∈ H matches one
of the labeled image region Ri, defined as ϕ(x) ∈ {1, 2, · · · , q}, such that

N(x, y) ∩Rϕ(x) 6= ∅ (9)

then, δ(x,Ri) is defined to measure how different is x from the region Ri that intersects
N(x). The simplest definition for δ(x) proposed by [Adams and Bischof, 1994] is

δ(x,Ri) = |g(x)−mean
y∈Ni

(g(y))| (10)

where g(x) is the gray value of the image point x and Ni is the neighborhood round point
x. If N(x) meets two or more of the labeled regions, ϕ(x) takes a value of i such that N(x)
meets Ri and δ(x,Ri) is minimized.

ϕ(x,Ri) = min
x∈H
{δ(x,Rj)|j ∈ {1, · · · , q}} (11)

A seed keeps growing until there are no more unallocated IEs or a stop condition is
reached. However, the main disadvantage of SRG is to be affected by spread outside
the ROI since the process cannot distinguish connected structures with similar proper-
ties [Zanaty and Asaad, 2013]. Revol [Revol-Muller et al., 2013] proposed two formalisms
for grouping the extensions of SRG. The first formalism is feature space oriented. It allows
processing whatever kind of data (e.g. gray levels, physical parameters, spatial coordinates).
Its advantage is to define a robust neighborhood, i.e., a set of points belonging to the tar-
geted population without considering outliers. The second formalism describes SRG as an
iterative and convergent process driven by an energy minimization. This formalism is used
to take into account whatever kind of energy based on different types of information, e.g.,
contour, region or shape.

3 Related work

This section presents related works to PVS on brain MRI. First, single models are reviewed
by discussing their approaches and limitations. Then, hybrid models are analyzed in a similar
way as single models. Methods that deal with brain segmentation but do not address PVS
are not the main focus of this research, therefore, they are not discussed in depth.

3.1 Region based methods

Region based methods use local intensity or descriptive statistics, like mean and standard
deviation, together with a minimization framework to achieve segmentation. Some examples
of these methods are thresholding, region growing and watershed. Thresholding is a simple,
efficient and well-known tool to separate object’s ROIs. Thresholding uses a single or com-
posed value called thresholds τ to achieve the desired partition. In its simplest form, thresh-
olding uses a single value proposed from histogram analysis [Gonzalez and Woods, 2007].
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Thresholding can be modeled in sophisticated ways to be robust against noise and arti-
facts in the image [Sezgin et al., 2004]. Nevertheless, thresholding is not an appropriate
solution to deal with PVS since it does not consider the existence of mixed elements. On
the other hand, thresholding can be used to separate non-brain elements from brain ele-
ments [Dogdas et al., 2005, Douaud et al., 2007]. An interesting approach for dealing with
PVS on bone analysis is presented in the work of Thevenot [Thevenot et al., 2014].

Lin [Lin et al., 2012] addressed tissue brain segmentation with a combination of multi-
spectral MRI (see Figure 8) and fuzzy knowledge (fuzzy edge determination and fuzzy simi-
larity computation) to improve the seed and growing process in a modified SRG. Even if the
model does not address PVE directly, the usage of multi-spectral MRI and fuzzy knowledge
could provide a solution. Nevertheless, due to its multi-spectral approach, the author does
not provide information about the performance of the model if there are not multi-spectral
data. For evaluating the performance of his model, the author uses Dice Similarity Coeffi-
cient (DSC), also known as the overlap index or F1. Péporté [Péporté et al., 2011] proposed
a hybrid approach to segment premature infant brain tissues from MRI. This model com-
bines K-means and SRG to segment brain tissues (GM and WM), aiming at skull-stripping.
According to the author, there is a weak point in the delimitation of boundaries between
CSF and brain tissues, which remains an unsolved problem. The author uses the Jaccard
(JAC) index to evaluate the performance of his model [Taha and Hanbury, 2015].

DSC =
2|Sg ∩ St|
|Sg| ∪ |St|

(12)

JAC =
|Sg ∩ St|
|Sg| ∪ |St|

(13)

where Sg and St are the ground truth and outcome from the model respectively. |·| is the car-
dinality of the set. Nevertheless, due to its multi-spectral approach, the model may not work
if there is not available these type of multi-spectral data. Zanaty [Zanaty and Asaad, 2013]

Figure 8. Multi-channel brain MRIs acquired from different pulse sequences of TR and
TE [Lin et al., 2012].

proposed an extension of SRG which is based on a probabilistic approach for calculating
a multi-threshold function for the homogeneity criterion. This function defines a threshold

14



value for a particular region regarding with a local neighborhood and probability of each
IE of the region. The seed process is carried out by manual operation. On the other hand,
the success of the method relies on the proper selection of a set of values, which are fixed
manually for the whole MRI volume. Morales [Morales et al., 2014] presented an extension
of SRG to separate pure IEs from pv-element in remote sensing images. The seeded process
was achieved with a genetic algorithm that combines a sub-regions (obtained with water-
shed algorithm [Haris et al., 1998]) into homogeneous groups. Centroids for each cluster are
calculated and used as a reference point to select the best seeds in the group. New IEs are
added to the seeds until a stop condition is reached. Only the data distributed in the first
standard deviation are designed as pure IEs of each homogeneous coverage. Because the
model was designed to work with remote sensing images, there are no comments from the
authors about the performance of the model with single-band images or its application to
other multi-spectral domains.

3.2 Machine learning based methods

Machine learning based methods use features (typically features are intensity and texture)
to classify the IEs and achieve a partition among ROIs. FCM is a well-known classification
method because it can handle uncertainty (noise and PVE). FCM allows performing adjust-
ments on its operating parameters that provide good results. These modifications can be
divided into two groups: methods evaluating the segmentation performance by modifying
the object function, and methods assess the segmentation performance by modifying the
membership value [Kang and Kim, 2014]. Modifications on FCM try to include robustness
against noise and spatial constraints but at the same time introduce computation issues, by
changing most equations along with the change in the objective function, and have to lose
the continuity from FCM [Shen et al., 2005]. However, the principal drawback for FCM is
its random initialization, which provokes that the algorithm needs to be executed several
times to ensure a correct result [Wang et al., 2008]. Kannan [Kannan et al., 2012] introduces
an extension of FCM, called robust fuzzy c-means based kernel function (RFCMK), which
replaced the original Euclidean distance with properties of kernel function on feature space.
Furthermore, RFCMK includes cluster initialization. However, the RFCMK structure turns
sophisticated and highly dependent on the value of α and β, but the author does not give
the guidelines or restrictions to choose them. Table 1 describes some extensions of FCM
algorithm for the classification of pv-elements.

Concerning ANN, the SOM network is designed to work as an automatic unsupervised
data-analysis method. The SOM has been used in image segmentation and clustering
tasks [Kohonen, 2013]. The main advantage of SOM in segmentation is the use of topological
information, since a set of prototypes can represent a cluster. Ortiz [Ortiz et al., 2013a] pro-
posed two variations of SOM to identify CSF, GM and WM on brain MRI. The first method
is called HFS-SOM, it aims to model peaks and valleys of the histogram as it retains discrim-
inative information for the classification task. Initialization of SOM prototypes is performed
by using the two largest principal components from the input set. Figure 9 depicts the
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Table 1. Related works for classification of brain MRI by using FCM extensions.
Author Relevant features Data Metric

[Zhang et al., 2017] Peak detection is used to initialize cluster centers,

spatial information provide robustness to artifacts

and reallocation of the misclassified pixels refines seg-

mentation result

Synthetic

Real

JAC

[Gong et al., 2013] Euclidean distance was replaced by kernel metric to

incorporate local information

Synthetic

Real

JAC

[Sikka et al., 2009] Automatic cluster calculation. Several initial param-

eters must be manually tuned

Synthetic

Real

DSC

[Liao et al., 2008] Spatial constrained kernel and bias field correction,

provide a robust and fast performance

Synthetic

Real

JAC

grouping processes, the most similar prototypes have similar colors, and their size represents
the number of activations of each group (prototypes with a higher number of activations have
a larger size). The second method named EGS-SOM uses a feature vector composed of some
first order statistics (IE’s gray value, mean, and standard deviation), 14 texture features pro-
posed by [Haralick et al., 1973] and 7-moment invariants defined by [Hu, 1962]. EGS-SOM
incorporates a feature selection process, inspired by the work of Güler [Güler et al., 2009]
where feature vectors optimization were achieved by PCA, based on a Genetic Algorithm
(GA). SOM prototypes are grouped by calculating the entropy gradient for each of them.

Figure 9. Prototype activation (a) and clustering result after computing the clusters with the
k -means algorithm for 3 clusters (b) [Ortiz et al., 2013a].

About the performance of both methods, HFS-SOM is computationally efficient and allows
the segmentation of the whole volume at once, insofar as images do not contain severe
intensity inhomogeneities (caused by non-uniformities in the radio frequency field during
acquisition). The author used the JAC index to measure the accuracy of the two methods.
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HFS-SOM reports 0.60 ± 0.08 of accuracy for WM and 0.60 ± 0.09 for GM. On the other
hand, EGS-SOM provides better results than HFS-SOM 0.76 ± 0.04 for WM and 0.73 ±
0.05 for GM. EGS-SOM is robust against noise and inhomogeneities because it incorporates
optimized features but at considerable computational cost. SOM also is used to help other
methods in their limitations, Anitha [Anitha and Murugavalli, 2016] used SOM to generate a
training examples for a KNN classifier. Similarly, Abdelsamea [Abdelsamea et al., 2015] used
SOM for guiding an active contour model, named Self-Organizing Active Contour (SOAC),
for segmenting brain tissues. In SOAC model, it is assumed that training examples belonging
to the true foreground Ω+ and true background Ω− of a training image are available I tr.
Then, two different SOMs are trained using, respectively, the two training sets. In such a
way, the neurons of each SOM self-organize to learn, respectively, the topological structures
of the intensity distributions of the true foreground/background. Furthermore, the SOAC
model can be extended to the case of vector-valued images. Such an extension is particularly
useful for the segmentation of multi-spectral images. In the vectorial case, the image I(x)
is composed by D channels Ii(x), with i = 1, . . . , D. The limitation presented by the SOAC
is the selection of training examples, manually selected, there is not a description of the
size of the SOMs either of it data representation quality by the maps, and the r0, σ and σ′

parameters must be tuned manually for each image.

Figure 10. Segmentation results obtained by the SOAC model on brain MRI. The training exam-
ples used by the SOAC model (in red for the foreground, in blue for the background). The initial
contours (rectangle) evolves at three successive stages of SOAC [Abdelsamea et al., 2015].

Liu [Liu et al., 2010] presented a modification in the training of SOM that allows it train in
a supervised fashion way. The modification called tagging expands the dimension of training
samples to N +k, where N is the dimension of training samples and k the number of classes.
The class information is embedded into the training samples in the form of binary coding.
After training, the model incorporates FCM to address pv-elements classification regarding
clusters. However, a drawback of this work is that does not provide an evaluation metric of
its performance because of the lack of ground truth.
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3.3 Statistical based methods

Statistical based methods label IEs according to probability values, which are usually de-
termined based on the intensity distribution of the image. For brain MRI segmentation, often
it is assumed that the IEs intensities are independent samples from a mixture of Gaussian
probability distributions [Despotović et al., 2015]. [Xia et al., 2016] proposed a model based
on learning Local Variational Gaussian Mixture (LVGM) models, assuming that the intensi-
ties of the tissues classes are Gaussian distributed even though the distributions are in fact
Rician. This assumption simplifies calculations, and the errors produced by it are acceptable.
However, in reality, the standard deviations of some tissue types are more significant than
others, so assuming that all standard deviations are equal is not realistic [Zhang et al., 2001].

On the other hand, MRF modeling itself is not a segmentation method but a statistical
model that it is usually incorporated into segmentation methods. MRFs model spatial
interactions among neighboring IEs. In medical imaging segmentation, they are used because
most IEs belong to the same class as their neighboring IEs. This relation implies that any
anatomical ROI formed by a single IE has a very low probability of occurring under MRF
assumption [Pham et al., 2000]. [Ahmadvand and Daliri, 2015] used MRFs for reallocating
a sub set IEs on each cluster, which have lowest belonging to their cluster. The initial
partition was achieved by two approaches, FCM and a combination of Genetic Algorithm
and Gaussian Mixture Models (GA-GMM). The author proposed two energy functions; the
function selection depends on which method was used to achieve the initial partition. Then,
MRFs are used for classifying and improving the initial segmentation. A possible limitation
of this model may be that does not address CSF class, being this class which presents the
most severe PVE affectation since it is present in the interfaces CSF-GM and CSF-WM

3.4 Hybrid methods

Appropriate selection technique for a given application is often a trade-off among robust-
ness against noise and inhomogeneities, accuracy and computational efficiency. A combina-
tion of several techniques may be necessary to obtain the segmentation goal. This combi-
nation is called a hybrid approach, and it combines different complementary methods into a
unified approach to overcome many of the disadvantages of each single method and achieves
specific goals that others cannot reach [Despotović et al., 2015]. Table 2 describes some
hybrid models. The critical issue of hybrid based segmentation methods is their increased
complexity (time and space complexity) compared with single models. These methods also
have to deal with several parameters that need to be tuned. Furthermore, it is essential that
the outcome from a previous method be suitable or require the minimum post-processing for
the next method. Furthermore, the combination of many individual methods may require
considerable computational resources or substantial computation burden. Therefore, a hy-
brid segmentation method should be carefully and wisely designed to provide good quality
and efficient performance.

18



Table 2. Related works for hybrid classification approaches.

Author Segmentation

technique

Relevant features Disadvantages

[Lötjönen et al., 2010] Multi-atlas+EM Atlas selection is done based on an intensity-based

similarity. The EM algorithm is applied for a multi-

object segmentation

The major limitation is that images to be segmented

and atlases used should be acquired approximately

similar imaging parameters

[Liu and Guo, 2015] K-means+SVM K-means is used to generate training examples and

initial partition. SVM uses the data from K-means

to refine the initial partition

The random initialization of K-means demands sev-

eral runs to secure a correct result. SVM training

needs to be executed for each

[Gui et al., 2012] MRF+ACO+GA1 The high-level knowledge guides specific segmen-

tation functions (watershed and active contours),

making the model fully automatic

It is a highly elaborated method since it has several

subprocess

[Ortiz et al., 2013b] FCM+GA2+SOM The combination of FCM-SOM provides an efficient

partial volume estimation

Feature optimization was performed mixing infor-

mation of pure and mixed IEs

[Agahari and Chan-
drashekhar, 2017]

SOM+EFCM Feature prototypes (frequency and statistics) are in-

put to the SOM for coarse clustering. The codebook

vectors of the trained SOM are clustered automati-

cally using EFCM.

The model has problems dealing with non-gaussian

noise. Prototype clustering relies upon a manual

tuning

[Sainju et al., 2014] SRG+MLP SRG obtains homogeneous regions from which fea-

tures for classes are extracted. Then, a MLP uses

these features for identifying bleeding regions

SRG require manual tunning

[Helmy and El-
Taweel, 2016]

SIST+SOM+PCNN The inverse SIST together with SOM is used for a

preliminary classification. PCNN refines the SOM

results to reduce the over-segmentation artifacts

The SOM and PCNN parameters need adjusting

through successive iterations

EM=Expectation Maximization SVM=Support Vector Machine MRF=Markov Random Fields ACO=Ant Colony Optimization
GA1=Gossip Algorithm FCM=Fuzzy C-Means GA2=Genetic Algorithm SOM=Self-Organized Map
SRG=Seeded Region Growing EFCM=Extended Fuzzy C-Means MLP=Multilayer Perceptron SIST=Shift-Invariant Shearlet Transform
PCNN=Pulse-Coupled Neural Network
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3.5 Metrics for evaluating partial volume segmentation results

The evaluation of the results of a partial segmentation method depends on the application
domain. In real images where ground truth does not include partial labels, the quantita-
tive assessment is restricted to evaluate the quality of the subsequent hard segmentations.
For example, [Tohka, 2013] and [Ahmadvand and Daliri, 2015] used MRF for computing an
estimate of the fractional tissue content of each of the three main tissue types (WM, GM
and CSF) in each IE. Then, they classify the IEs regarding with the maximum fractional
tissue content. Quantitative evaluation is performed with JAC index and DICE coefficient.
In similar way, [Ortiz et al., 2013b] presented a model with a soft classification approach to
address the classification of pv-elements and used the maximum membership criterion to
assign these elements into a single class.

On the other hand, when it is available a partial label ground truth, there are metrics
for quantitative evaluation of the uncertainty. [Morales, 2014] presented a model for soft
classification of pv-elements in remote sensing images. The author used a metric called
Class-specific Fuzzy Certain Measure (CFCM) proposed by [Schiewe and Kinkeldey, 2009],
equation (14) describes the CFCM

CFCM(c) = 1− 1
n

∑n
i=1 |µi,REF (c)− µi,class(c)| (14)

∀i|µi,REF > 0 ∪ µi,class > 0

where µi,REF (c) is the class membership value of a pixel/area for class c in reference data,
µi,class(c) is the class membership value of a pixel/area for class c in classification data and n
is the number of pixels/areas under examination. The interpretation of (14) is that if a value
≈1 is obtained, it means that there is a high match for the object of the class c between the
reference data set and the classification result. [Crum et al., 2006] proposed overlap measures
for multiple labels namely JACml and DICEml, equation (14) describes JACml

JACml =

∑
labels,l,

∑
voxels,iMIN(Ali), Bli∑

labels,l,
∑

voxels,iMAX(Ali), Bli

(15)

where Ali is the value of voxel i for label l in segmentation A (analogously for Bli) and α is
a label-specific weighting factor that affects how much each label contributes to the overlap
accumulated over all labels. Here, the MIN(·) and MAX(·) are the norms used to represent
the intersection and union in the fuzzy case. DICEml can be then calculated from JACml

with DICEml = 2JACml/(1 + JACml).

4 Problem statement

PVE may affect the structural information of digital images and its characterization since
it modifies the structure of ROIs. Even with the existing high-resolution devices, PVE
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is not reduced to a desirable level because the problem moves to other zones on the im-
age [Christiansen, 2016]. There is a particular interest to solve the problems that PVE
presents in the structural characterization of the brain analyzed from MRI. There are several
methods reported in literature about brain MRI segmentation. Most of those methods ad-
dress brain segmentation as a pattern recognition task where the image is transformed into a
set of relevant features [Ortiz et al., 2013a, Liu and Guo, 2015, Helmy and El-Taweel, 2016].
This approach is made under the assumption that each ROI will be represented by a partic-
ular set of features.

However, images affected by PVE have severe overlapping cases among the features that
represent each ROI, which leads models to an incorrect segmentation result. Even when an
optimization process is applied to the selected features, it may be possible that this process
fails in its purpose because the structures are severely affected by PVE [Péporté et al., 2011].
Furthermore, the lack of labeled training data demands models to be capable of learning from
the data in an unsupervised manner for identifying information free or, at least, corrupted
at minimum level by PVE [Anitha and Murugavalli, 2016].

An initial partition between homogeneous regions and regions formed by pv-elements may
provide information (gray level distribution, spatial location and/or topological relationships)
that help models to impose stronger constraints for reducing the overlapping among the
features of the ROIs [Thevenot et al., 2014, Morales, 2014, Abdelsamea et al., 2015]. Fur-
thermore, this information may be used as a training set in such way that models can learn
in a supervised way when there is a shortage of training data. Therefore, we assume that
this approach may improve the classification of pv-elements in structural characterization of
brain tissues.

The problem to be addressed in this research is focused on detecting and separating
homogeneous regions from T1-weighted scans of the brain, such that the information of
these areas can be used for estimating the tissue proportions in pv-elements. We selected
T1-weighted scans because they provide the best scan resolution, and are useful for local-
izing anatomical structures unlike with T2-weighted which is helpful for detecting patholo-
gies [Deserno, 2011, Li et al., 2015]. The proposed solution consists of a hybrid model that
identifies and selects reference information (points/regions) that represent the CSF, GM and
WM classes. This information will be obtained from:

• Gray distribution and spatial location.- an extension of the SRG algorithm will be im-
plemented with the purpose of identifying the location and gray level of IEs affected at
a minimum level by PVE. Subsequently, each IEs will be represented by a feature vec-
tor composed of gray value, mean, standard deviation and 14 texture features proposed
by [Haralick et al., 1973].

On the other hand, the model will use the information from initial partition for training
a SOM in a supervised way. Then, FCM algorithm will be used to group prototypes; this
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strategy tries to explode the topological information of SOM to forming a cluster represented
by a subset of SOM prototypes. The fuzzy approach provided by FCM will allow estimating
the proportions of each class in a pv-element. The output of the model will be presented
as a partial volume estimation map (PVEM), but if necessary it may be transformed into a
hard format using a maximum membership approach.

4.1 Justification and Motivation

Because of the nature of PVE (spatial resolution and spatial sampling), the problem may
be addressed as a pattern recognition task. Even, when there is a lot of research about brain
MRI segmentation, most of it revolves around feature optimization, while few part of such
study has been focused on reference data issues although it may help reduce the overlapping
among classes and improving the segmentation results of the model [Abdelsamea et al., 2015,
Ahmadvand and Daliri, 2015, Yazdani et al., 2016]. For instance, feature reduction through
GA or principal component analysis (PCA) provides the most discriminative features to
improve the segmentation result. Nevertheless, both of them analyze the feature vectors
from pure and mixed IEs they may not avoid the bias added by pv-elements. Even though
several approaches have been proposed to reduce the bias added by pv-elements, it remains
as knowledge gap that requires attention because it is an ill-posed problem.

Brain tissue understanding and characterization are some of the most important goals for
computer imaging science in medical domains [Madabhushi and Lee, 2016]. Since most of
the interest in the brain focuses on analyzing it when it is working, in-vivo studies are highly
desirable. MRI is one of the principal images modalities selected by scientists to perform
studies concerning the brain structure, because of its advantages with regard to other modal-
ities (non-ionizing radiation and minimum dependence of tracers). However, a key point in
the studies of the brain depends on the correct identification of ROIs.

Providing solutions for the problem of correct identification of ROIs on brain MRIs, by
incorporating a pre-selection stage to impose constraints for the reduction in the overlapping
among the features of the ROIs, may produce new knowledge or solutions that improve the
quality of the classification-segmentation and unveil information from the brain structure.
The main goal of this research is to perform a pre-selection stage that identifies and selects
IEs affected the least by PVE for the representation of CSF, GM and WM classes. As well
as the development of a classifier that uses the pre-selected information with the purpose
of determining the boundaries that represent each class, estimating the proportions of each
class in a pv-element, and assigning this kind of elements to a single class.

4.2 Research questions

The research questions that guide this research are:

• How can a non-overlapping partition be achieved between homogeneous regions and
regions composed of pv-elements in T1-weighted scans of the brain?

22



• How can be used the information from homogeneous regions for estimating the tissue
proportions in each pv-element?

• What are the implications of making a hard classification of the pv-elements through
a partial estimation of these in T1-weighted scans of the brain?

4.3 Hypothesis

The hypothesis driving this research is:
A model based on seeded region growing, self-organized maps and fuzzy clustering may im-
prove the classification of pv-elements in brain magnetic resonances, restricted to T-1 weighted,
when an initial partition is established, in comparison with other methods addressing this kind
of classification problem.

4.4 Aim

The aim of this research is to develop and validate a hybrid computational model to over-
come the challenges introduced by PVE on brain MRIs and to achieve a precise classification
of the brain tissues.

Specific Objectives

• To propose an extension of a segmentation algorithm based in SRG, so that it can
separate pure IEs from pv-elements on a single channel brain MRI.

• To develop strategies to incorporate fuzzy clustering among SOM’s elements to improve
the pv-elements classification in T1-weighted brain MRI.

4.5 Expected contributions

The proposed research work aims at the following contributions:

• An extension of a segmentation algorithm based on SRG to identify and separate
homogeneous regions from regions formed by pv-elements. Furthermore, the extension
of the SRG algorithm will automatically seed and incorporate a reallocation process
for reassigning IEs that were wrongly segmented.

• A model based on SOM-FCM to address PVS on brain MRI.

5 Methodology

To reach the objectives and answer the research questions raised in this Ph.D. research,
the following methodology is proposed:
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1. Application domain characterization.- In this phase, the required datasets will be gath-
ered and characterized. The characterization step determines the necessary parameters
that images must have to achieve the goal.

• Data selection

– BrainWeb from the McConnell Brain Imaging Centre [Cocosco et al., 1997].
A MRI simulator creates synthetic images of the brain by using anatomical
models.

– Internet Brain Segmentation Repository (IBSR) from the Massachusetts Gen-
eral Hospital. IBSR contains real images from patients, including ground
truth data for each of them [IBSR, 2010].

• Removal of non-brain tissue.- There are some non-brain tissues such as fat, skull,
dura and marrow whose intensities might overlap with the intensities of brain
tissues. These tissues are not of interest for the study of brain tissues; therefore
they are removed using BrainSuite [Shattuck et al., 2001].

2. To develop an extension of a segmentation algorithm.- with the purpose of separat-
ing homogeneous regions from regions formed of pv-elements, an extension of SRG
algorithm proposed by [Adams and Bischof, 1994] will be developed. The algorithm
receives as input a T1-weighted scan, while it provides as output four sets; three of
them composed of pure IEs and one formed by pv-elements. Key points in the SRG
extension are:

• To develop a method for seed selection. A seed must satisfy three criteria proposed
by [Shih and Cheng, 2005]:

(a) High similarity to its neighbors

(b) At least one seed must be placed in each ROI

(c) Seeds for different ROIs must be disconnected

• Penalize IEs that do not meet the homogeneity test. Penalization has the intention
of excluding extreme values in the growing process of seeds, which may lead to a
failure in algorithm goal.

• To propose a reallocation process that reassigning IEs that were penalized or
assigned into a wrong set [Ahmadvand and Daliri, 2015].

The Area-Fit-Index (AFI) [Neubert et al., 2008] will be used for the assessment of
results, which was used in [Morales et al., 2014] to quantify the difference of areas
between the reference object and the segmented object. It is defined by equation (16)

AFI =
Arearef − Areaseg

Arearef
(16)
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3. Pattern representation.- by using the initial partition from the proposed extension of
SRG, a set of transformations on the IEs will be performed. Each IE will be represented
by a feature vector composed of first order statistics and textural features in similar
way as in the work of [Ortiz et al., 2013a].

4. Partial estimation.- a hybrid model based on SOM-FCM will implemented to address
the partial volume estimation of each pv-element on a brain MRI. The next points
must be covered to achieve the goal:

• Initialization of prototypes.- following the assumption that a good initial map,
refined by SOM training may provide a better representation of the feature space,
we initialize SOM prototypes using the scheme proposed by Su [Su et al., 1999]
to work with the three patterns with the largest inter-pattern distance (i.e., the
CSF, GM and WM classes).

• Shortcut winner strategy.- under the premise that the BMU of a pattern is in the
neighborhood of the BMU for the previous epoch [Engelbrecht, 2007]. This step
has the purpose of improving the convergence speed of the model.

• Clustering SOM prototypes.- grouping similar prototypes into a single cluster that
represents the same class may act as BMU for a subset of the data manifolds.
Furthermore, it is necessary to estimate membership degree of a pv-element to
a cluster. Hence, the FCM algorithm [Bezdek et al., 1981] is incorporated to
SOM for achieving both tasks, grouping prototypes and calculating memberships
degrees. FCM for SOM can be formulated as follows:

Jm =
N∑
i=1

C∑
j=1

µm
ij‖wi − cj‖2 (17)

where, N is the number of data samples, C is the number of clusters (CSF, GM,
and WM), wi is a prototype of the SOM, µm

ij is the membership function defined
as:

µij =
C∑

k=1

||wi − cj
wi − ck

||− 2
m−1 (18)

where cj is the center of the jth cluster. However, since each SOM’s element is
a cluster optimized there is no need to recalculate centroids for FCM. Therefore,
each IE can be assigned to a different cluster with its corresponding membership
degree. Finally, the result of the hybrid model will be a PVEM of the brain
tissues on a MRI. The CFCM described in equation (14) will be used to evaluate
the results of partial estimation.

5. Transform a PVEM into a hard representation.- This with the purpose of using the com-
putational model on real brain MRI where the ground truth consists of non-overlapped
sets. Initially, we intend to use maximum membership criterion to defuzzify PVEM.
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6. Implementation and Validation.- The proposed model will be implemented, followed
by a validation process through experimental design.

• Internal validity.- to compare the segmentation result of the method with the
ground truth. The JAC index [Taha and Hanbury, 2015] will be used as evalua-
tion metric.

• Concurrent validity.- to compare the segmentation result of the method with the
work of other authors. The comparison will be made with four works:

(a) [Yazdani et al., 2016], this work is based on an extension of SRG.

(b) [Zhang et al., 2017], this work is based on an extension of FCM.

(c) [Ortiz et al., 2013b], this work is based on SOM.

5.1 Experiments

This section describes the experiments that will be performed to validate the hybrid com-
putational model.

Experiment 1 (E1)
SRG algorithm extension evaluation.- the proposed SRG extension will separate pure
IEs from pv-elements. The ROIs correspond to three different tissue classes: CSF, GM and
WM. Non-brain tissues will be removed by using BrainSuite [Shattuck et al., 2001].
Aim: to test the extension of the SRG algorithm for the localization and segmentation of
pure IEs from pv-elements on a single channel brain MRI by analyzing their gray level dis-
tribution.
H1: it is possible to separate pure IEs from pv-elements on a brain MRI by analyzing their
gray level distribution.
Experimental design:
Experimental unit : single channel brain MRI.
Independent variable: proposed SRG extension algorithm.
Dependent variable: achieved segmentation.
Potential sources of bias : model implementation.
Evaluation: experiment will be evaluated at two levels of validity, internal and criterion.

Experiment 2 (E2)
Evaluation of the proposed hybrid computational model.- the proposed hybrid model
will address PVS on brain MRIs.
Aim: testing the model performance to classify pv-elements on brain MRI.
H2: the use of pre-selected information combined with a hybrid computational model based
on SOM-FCM may lead to better results on PVS issues on brain MRI.
Experimental design:
Experimental unit : single channel brain MRI.
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Independent variables : pre-selected information from E1 and the proposed hybrid computa-
tional model.
Dependent variable: achieved classification.
Potential sources of bias : model implementation.
Evaluation: experiment will be evaluated at two levels of validity, internal and criterion.

5.2 Work plan

The schedule in Figure 11 shows the proposed activities for the development of this re-
search.

Figure 11. Work Plan.

6 Preliminary results

This section describes the results obtained during the development of an extension of the
SRG algorithm. Synthetic images were used to test the performance of the algorithm.

6.1 Synthetic images of the brain

BrainWeb provides 20 anatomical models of 20 healthy brains. Each set contains the
masks (sets of labeled image elements) of 9 tissues (cerebrospinal fluid, gray matter, white

27



matter, fat, muscle, muscle/skin, skull, blood vessels, connective (region around fat), dura
matter and bone marrow). Each model is used to create a synthetic brain MRI. The model
is blurred by a Gaussian mask (9×9 size) to simulate PVE. Furthermore, 3%, 5%, 7% and
9% of Rician distributed random noise was added to simulate the noise present in a real MRI
as in the work of [Tohka, 2013] (see Figure 12).

(a) (b) (c)

Figure 12. Synthetic image; (a) masks of the anatomy o the brain, (b) skull stripped, and (c)
synthetic images of brain tissues (CSF, GM and WM) corrupted by 7% of Rician noise.

6.2 SRG extension

The extension of SRG is divided in three steps, seeded, growing and reallocation. The
seeded process was performed by analyzing the histogram of the image. As it can be ob-
served in Figure 13, the histogram presents three main peaks. The first peak corresponds
to the CSF, the second to GM and the third to WM. The seeds for each class are selected
with S = ka ≤ I(Pc) ≤ kb, where S is the set of seeds for each ROI, I is the observed image
intensity, Pc is the peak value of each class, and ka and kb are thresholds. Then, the quality
of each seed is evaluated with a factor q = µsi/σsi , where µsi is the mean and σsi is the
standard deviation, both statistics are calculated over a window of 3× 3. Those seeds with
a q ≥ τ , are selected as good seeds and used for the growing process, τ is a threshold value
selected.

The growing process incorporates new elements into a region if they satisfy a homogeneity
criterion. In this research, a measure based on the mean and standard deviation at a local and
global level was chosen. Algorithm 1 describes the growing process. Each IE is considered
as a candidate for being added to a ROI. Line 3 describes the first test for a candidate, if
the candidate fails the test it is penalized and excluded from the growing process. We define
two kinds of homogeneity measures, local and global. A global homogeneity test (line 4) is
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Figure 13. Histogram of one synthetic brain MRI corrupted with 7% of Rician noise.

used to evaluate the first neighborhood of the ith seed; µg and σg are the mean and standard
deviation gray value of the seed set that represent a ROI. Once the i-th seed has grown for
the first time, the added elements are used to define a local homogeneity test (line 5) based
on similar metrics as in line 4. Nevertheless, µl and σl are updated every time that new
candidates are added. Finally, Rc contains the candidates corresponding to classes CSF,
GM and WM. Pc contains all the penalized candidates. Later, penalized candidates will
have a second chance to be added to a class by a reallocation process described by Eq. 19.

Algorithm 1: Growing

Data: MRI of the brain
Result: Partition Rc

1 foreach seed do
2 foreach candidate do
3 if the candidate has not been penalized or added to other ROI then
4 if the candidate is near to the seed & |I(candidate)− µg| ≤ ασg then

Rc ←− candidate;
5 else if |I(candidate)− µl| ≤ ασl then
6 Rc ←− candidate;
7 else Pc ←− candidate;

8 end

9 end

10 end
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Reallocation(Pc) =


1 µRc − 3σRc ≤ I(Pc) ≤ µRc + 3σRc

0 otherwise
(19)

where µRc is the mean gray value and σRc the standard deviation of class Rc . This metric
has the purpose of excluding extreme values [DeGroot et al., 1986].The recovered candidates
are reallocated to the corresponding class. Figure 14 depicts an example of segmentation
obtained by the proposed extension of SRG.

Figure 14. Result of the extension of SRG. The process for CSF is depicted in the first row, for
GM in the second row and for WM in the third row. The first column shows the ground truth.
The second column shows growing process. The third column shows penalized elements. The
fourth column shows the final result of SRG. The fifth column shows the errors, yellow for false
positive and pink for false negative.
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6.3 Discussion

The proposed extension of SRG obtains betters segmentations results than the original
SRG. This result is in part to the seeding process, while the original SRG requires manual
process (which is complicated in certain areas where the structures are blurred) the pro-
posed extension can put seeds in zones where an operator may have problems with placing
seeds. Furthermore, due to the noise, the growing process of the original SRG stops pre-
maturely, while the proposed extension can analyze and add a greater amount of elements.
This because to the local analysis and the reallocation process incorporated in the proposed
extension of SRG.

As shown Table 3, the best results were obtained for WM when the images are affected by
noise levels above 5%. This because the gray distribution of WM presents lower overlapping
concerning to CSF and GM. JAC index for GM is lower than WM because GM has the
biggest perimeter, which means it has a lot of IEs affected by PVE. On the other hand, the
proposed extension of SRG has problems identifying IEs of CSF because many of them are in
zones where CSF is thin, and PVE affects almost at all IEs. All those factors cause the JAC
index for CSF is the lowest of the three, but the result obtained by the proposed extension
of SRG for CSF and GM are better than the obtained by the original SRG. However, it is
necessary to improve growing processes. The reallocation process, even when its operating
principle is quite simple, it proved to be useful to recover IEs that were wrongly penalized.
However, it is necessary to improve it and extend it to operate on IEs that were wrongly
assigned to CSF, GM or WM classes.

Table 3. Performance chart of the original SRG and the proposed extension with the Brain-
Web [Cocosco et al., 1997] data set. ρ stands for Jaccard index, α stands for Sensitivity and β
stands for Specificity.

Method Noise % CSF GM WM

ρ α β ρ α β ρ α β

SRG 3% 0.318 0.694 0.787 0.701 0.859 0.902 0.820 0.821 0.999
5% 0.105 0.9903 0.212 0.436 0.999 0.632 0.849 0.878 0.991
7% 0.114 0.990 0.2663 0.430 0.999 0.6326 0.4212 1.000 0.628
9% 0.106 0.992 0.212 0.430 0.999 0.632 0.420 1.000 0.628

Proposed 3% 0.515 0.525 0.998 0.742 0.760 0.993 0.797 0.798 0.999
5% 0.569 0.603 0.995 0.776 0.845 0.975 0.827 0.834 0.997
7% 0.577 0.674 0.985 0.730 0.854 0.952 0.792 0.805 0.995
9% 0.472 0.741 0.939 0.580 0.713 0.935 0.750 0.764 0.994
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7 Conclusion

This document presents the Ph.D. research of the project in development. The research
is focused on proposing a hybrid computational model to address PVS on brain MRIs. The
goal of the model is to accurately segment those IEs that correspond to CSF, GM and WM
tissue classes.

As a preliminary result, an extension of the SDR algorithm has been developed, whose
objective is performing a pre-selection stage to separate pure IEs from pv-elements. The SDR
algorithm incorporates local and global information for seeding and growing. Furthermore,
in contrast with other variants of SRG, the proposed algorithm includes a reallocation step
for the detection of IEs that were misclassified because they did not meet the homogeneity
criterion. The proposed SRG extension achieved favorable results, but it still needs to be
refined in order to correct deficiencies and it needs to be tested with real MRIs. Regarding
the SOM-FCM classifier, as of now, the related works about SOM and FCM have been
reviewed, and some tests of the algorithms have been implemented to explore and understand
the operation of both methods. However, the steps for the SOM-FCM classifier described in
the methodology have not been implemented yet.
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