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Abstract

The development of analytical approaches for decoding brain’s effective connectivity from
neuroimages remains open to improvement as existing model assumptions depart from
physiological processes. Manifold based topological approaches are surprisingly underex-
plored considering the powerful mathematical abstraction they represent. This research
hypothesizes that the brain function abides to the topological abstraction of a manifold,
and thus the subsequent interactions among brain regions underpinning functional and
effective connectivity can be expressed either as locations within the manifold or as trips
along the manifold surface. In seeking to confirm this hypothesis, the aim is to develop
a model of brain effective connectivity capitalizing on topological modelling of neuro-
physiological processes so that the connectivity network can retrieved from experimental
neuroimaging data. As the physics of the image formation shall determine the topological
characteristics of the dataset, the modelling will have to consider such modality-specific
demands; in the case at hand, those of functional near infrared spectroscopy (fNIRS). To
realize this goal, first the topological properties (continuity, differentiality and existence
of a suitable metric) of the data will be characterized and the needs to represent the
segregational response attended. It will be shown how the ambient Euclidean distance
is insufficient for these purposes. Later, the integrational information will be univocally
integrated within the direction of the flow of information first along a Riemann mani-
fold by means of imposing a metric inspired on causal principles. Finally the inherent
causal structure of certain manifolds such as the Lorentzian, will be harness to afford
a computationally efficient modelling solution. Verification against synthetic scenarios
and posterior validation against gold standard Dynamic Causal Modeling (DCM) over
experimental observation will be carried out for the two modelling proposals. One impor-
tant contribution in computational neuroscience of this thesis shall be the establishment
of the foundations for topological modelling of brain function; an approach which has
been hinted in literature but it is thus far lacking robust foundational mathematical
support . Also, two major manifold-based modelling approaches i.e. Riemmanian and
Lorentzian, will be explored. Finally, additional definition and establishment of topo-
logical constraints to be demanded to the resulting manifolds will be characterized so to
ensure compliance with neurophysiological conditions and the exploitation of existing,
or imposition of causal structure of manifolds to encode brain’s effective connectivity.
Successful completion of this research will provide new computational insights about
topological modelling that should in principle be transferable to other domains, and it
will further offer a new highly expressive causal modelling approach for one of the most
important phenomenon to understand brain behaviour, effective connectivity.

Keywords

topology, computational neuroscience, neuroimaging, effective connectivity, Riemannian
manifold, Lorentz manifold.
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Chapter 1

Introduction

The field of computational neuroscience hypothesizes that all brain function can be
explained algorithmically as the mere summation of information processing capabilities
of the structures composing the nervous system. Although this foundational hypothesis
has been seriously challenged by several authors including Penrose in his brilliant The
Emperor’s New Mind as ultimately unable to explain consciousness and the ability to
think and have insight beyond algorithmic reasoning, Penrose himself as well as other
critics recognise computational neuroscience as a pragmatic and highly successful theory
for explaining the behaviour of such structures e.g. neurons, neural populations and
neural networks, as well as many sub-phenomena of brain function and making inference
about that function. In a sense, computational neuroscience stands in a similar position
to relativity in physics which ultimately predicts its own downfall, but which is currently
the best approximation to explain its domain.

Like relativity, computational neuroscience strongly requires causal models as some of
the brain function phenomena are inherently causal e.g. effective connectivity. Relativity
makes heavy use of topological modelling to support its causal expressions. Topology is
the study of shapes and their deformations under continuous transformations. Central to
topology is the concept of manifolds, locally flat surfaces that thus permit solving com-
plex non-linear operations in curved surfaces by means of the recursive local application
of a mathematical trick; local projection to a flat space, resolution of the operation in
the flat space where our mathematical skills excel and then projecting back to the curved
surface. The expression of causal relations within manifolds is often regarded as one of
the most strict forms of causality Cox & Wermuth (2004), which perhaps explains its
popularity in relativity.

The rationale of this research is that similar tools and methods from topology can
be exploited in computational neuroscience to afford an encompassing model of brain
connectivity. Brain connectivity regulates the brain’s integrational working principle
and has associative (functional connectivity) as well as causal (effective connectivity)
sides, the latter being the matter of study here. The analogy with relativity is not
far-fetched. Events in relativity’s spacetime are alike neural firings. Transmission of

1



2 CHAPTER 1. INTRODUCTION

information in relativity is limited by speed of light and in the brain by the speed of
electrical current. Causal influence is therefore restricted to events reachable within a
certain cone deformed by mass and gravity in the case of relativity and by structural
(anatomical) and metabolic (functional) constraints in the brain.

Departing from the hypothesis that the expression of brain function can be confined
to a manifold, the present research aims to develop a new manifold-based modelling
approach for the causal analysis of brain connectivity exploiting the expressive power of
topology. Neuroimaging analysis in terms of topological manifolds consist of encapsulat-
ing the solution space of the system’s response i.e. brain activity interrogated by means
of some neuroimaging technique, within a (hyper)-surface described by a collection of
local charts, globally defining an atlas. The individual charts, describing open subsets,
exploit the unique characteristics inherent to manifolds.

The image formation and reconstruction differs among neuroimaging modalities which
imply that the glass through which the brain function is observed deforms the observa-
tions in rather distinct ways depending on the neuroimaging modality. Such deformation
of the topological properties of the observation has to be taken into account during the
modelling process and ultimately affect the computational limitations of the modelling
solution. For the purposes of this research, the study of effective connectivity will be at-
tempted from the functional optical imaging technique known as functional near-infrared
spectroscopy (fNIRS).

Resulting from this research, two modelling approaches of brain’s effective connectiv-
ity based on the Riemann and Lorentzian manifolds are expected, and the computational
implications (advantages and limitations) of both approaches will be established.

The distribution of solutions, topology of these, in the solution space problem affects
computability thereof. In this sense, so that a problem is well posed, Hadamard requires
that these solutions (i) there, (ii) are unique for a given input and (iii) vary smoothly
with respect to the input. The latter requirement is strictly topological and implies
that the topology of the solutions should be differentiable. Study the topology of the
solutions, such as deciding whether a Riemannian or Lorentzian surface is suitable and
under what conditions to describe this topology, is therefore a central issue in computing.

1.1 Motivation

Manifolds are now a common analytical tool for scientists across diverse fields such as
genetics, robotics and biomedical imaging among others Lee (2012). In the field of
interpretations of functional neuroimaging is still rudimentary, especially considering
the expressive power offered by this type of modeling to encode and retrieve causal
relations Krym (2002); Rainer (1999). Thus far in this field, the existing work has mainly
focused on the application of concepts obviating the formalization of those concepts,
as these involve exploiting the intrinsic properties of the surfaces do Carmo (1976);
Berger & Gostiaux.
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In computational neuroscience, a number of functional neuroimaging modalities al-
low the neuroscientific community to routinely ask questions about the brain behaviour
in vivo. As these neuroimaging have become more refined so have the questions that
the neuroscientists pose and so the greater are the challenges of computational neu-
roscience to afford models to fit the observations. Computational, statistical and in
general, mathematical models from naive to elaborated have been the supporting lan-
guage to express the different hypothesis about brain structure and function with an
exciting overall performance, both predictive and explicative. For instance, we now
have models for explaining the mechanisms to detonate axon potentials like the well-
known Hodgkin-Huxley and its offsprings Abbott & Kepler (1990); Toral et al. (2003),
for encoding the hemodynamic response to brain activation Buxton et al. (2004), for ex-
pressing functional Ng et al. (2014) and effective connectivity Friston et al. (2003), etc.
And yet, none of these models seems encompassing enough to express the broad range of
brain function phenomena; segregational and integrational, transversal and longitudinal,
direct (neural) or indirect (haemodynamic), associative or causal, etc. Perhaps one of
the reasons is that given the complexity of brain behaviour it has been thus far more
practical to think (and address) one phenomenon at a time.

Even with this atomization of the problem, in the particular case of effective con-
nectivity, central to this research, the causal demand and the systematic departure of
model assumptions from neurophysiological truths leaves a clear margin for improve-
ment. Certainly, we know the problem is ill-posed, but most times even the most basic
computational properties of the problem are ignored leaving a huge gap in our knowledge.

1.2 Justification

Understanding how the human brain works is arguably one of the biggest challenges
of the twenty-first century science. With this knowledge it shall be possible to develop
new treatments for brain disorders, improve diagnosis, build communication technolo-
gies not mediated by regular sensorial channels, introduce advances in robotics, afford
novel bioinspired artificial intelligence solutions, etc. The study of cerebral connectiv-
ity Bassett & Bullmore (2006); Bullmore & Sporns (2009) deepens the understanding of
brain function. Methodologies to detect and quantify the different types of connectivity
directly impact our ability for diagnosis and treatment of various neurological and men-
tal conditions. Neuroimaging techniques are now a major area of study in understanding
the brain’s pathophysiology.

For definition the analysis of effective connetctivity demand a causal model. The
actually effective connectivity models for example dynamic causal modelling o structural
equation modelling are contruction on a asociative model limited of expresion causal.
The causal models extructuration of Cox Cox & Wermuth (2004), the topological models
based of manifold are a tool with which we have to express causal relationships. Perhaps
proof of this is of supports model of the theory of relativity where there is also an
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inherent requirement of causal models. In other words, based on modeling manifold has
the potential to support a causal expressions.

And by means of the computational neuroscience foundational hypothesis the study
of brain behaviour and computing are tightly interlinked. Indeed, subfields such as
neurocomputing the computational modelling of the nervous system structures, neuroin-
formatics organization of neuroscience data by the application of computational models
and analytical tools and neural computation development of neurally inspired models for
computing among others are hectic areas of research.

1.3 Problem statement

This work addresses the problem of revealing effective (causal) relations describing the
interplay among hidden system entities i.e. brain regions, when responding to a certain
task from a set of indirect observations i.e. superficial optical measurements encoding
brain haemodynamics as a proxy of brain activity. The latent computational problem
of modelling causal relation over unobserved variables from their indirect consequences
remains open. This problem is currently being attacked from different approaches Pearl
(2009); Lamport (1978) etc. One of the approaches, closer to the topological attempt
proposed in this research is perhaps manifold learning Cayton (2005), but this seem to
have thus far seen better success in associative modelling.

The problem is essentially how to maintain; so that they can be later retrieved, causal
relations across a composition of several functions deforming the space of interest. Given
that both the neural response function and the hemodynamic response function, although
spatiotemporally non-linear Sheth et al. (2004),Sheth et al. (2005), are often regarded as
continuous and differentiable, the problem is expressed as a topological one, where the
space of solutions lays on a locally linear hypersurface (or manifold). A bit more formally,
given a set O of superficial optical measurements at a number of locations (or channels)
i, recover the manifold M where each point in the surface of the manifold represents a
global or partial solution in the configuration space.

This is in fact a multistage mapping (indeed we intend to show that structures are
respected across the transformations).

f : N × C → H → OP → O

where N represents the space of neural activity often expressed by regions, C rep-
resents the connectivity space whether functional or causal, H represents the haemody-
namic space normally affected by noise such as the systemic, OP is the space of optical
properties of the head tissues and O is the space of optical measurements at scalp. The
submappings N → H1, H → OP and OP → O are often referred to as the neural ac-
tivation model, the haemodynamic response model and the image reconstruction model
respectively. As it will discussed all of these functions have received extensive attention

1Note the absence of the connectivity space.
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by their own. The overall problem of recovering the connectivity configuration C is an
inherenty ill-posed problem with many possible brain configurations raising the observed
optical functional neuroimage.

In addition to the existence of multiple solutions, it is unclear how these solutions are
to be represented mathematically to make neurophysiological sense, what it is referred
here as the semantics of the representation. Here, the semantics of a mathematical
representation refers to the physiological construct being encoded. The semantics of the
representation is also open to multiple options. For instance, a point in a space may
represent a full solution i.e. the whole graph (topology) of brain connectivity, whether
functional or effective, an approach commonly chosen when manifolds are the tool chosen
for representing the solution space of a problem. Alternatively, a point in a space may
only partially encode the local behaviour of the brain at a certain region or channel, and
it is a path along the manifold which describes the flow of information across regions,
i.e. a solution.

None of the specific submappings may have specific relevance to our modelling strat-
egy, but their effects will be noted in the different deformations that they introduced.
Consequently their choice has computational implications.

The first encodes causal relationships as a direct consequence of the location of each
point on the array where the direction of the relationship is encoded by the negative
signature of the metric tensor and uses the causal structure of the variety itself (ie,
manifold causal). The second alternative encodes causal relationships as a displacement
on the variety in what is known as a world-line. This second approach works on manifold
of positive signature and therefore the variety lacks a causal structure as such, which is
imposed externally by imposing a pseudo-metric to discern the direction of travel on the
variety. During the thesis, we hope to elucidate the advantages and limitations of each
of these representations.

Finally, the demand of expressing causality precludes classical associational models
from giving a satisfactory response to the problem. The appreciation of the causal
relations among system entities shall be attempted by imposition of a causally inspired
distance function over the manifold, and by exploitation of causal manifolds inherent
structure.

1.4 Research questions

1. Does the segregational behaviour of the system i.e. the brain, fits the mathe-
matical abstraction represented by a manifold? In other words, do the physical
characteristics of the problem domain, that of neural activation match the topo-
logical characteristics of the manifold?

Disambiguation: Before addressing the integrational questions, i.e. those of con-
nectivity ruling the collaborative behaviour among brain regions, it is necessary
to show that the segregational behaviour of the brain, i.e. localised specialized
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activity, is susceptible to be expressed by means of the topological abstraction of a
manifold. As it will be discussed, early work Friston et al. (1996); Leff et al. (2007)
assumed this to be the case and retrieves neuroimaging interpretations with cer-
tain nomological validity, thus suggesting this relation between the segregational
construct and the topological abstraction might be plausible. However, evidence,
whether analytical or experimental of this assumed relation is lacking.

Purpose: The purpose of this question is to identify the topological properties
(continuity, differentiality, and existence of a distance function) needed to represent
the segregational response, and in turn determine the manifold that suits these
mathematical demands, which it is expected to be the Riemmann manifold.

Assessment of success: Answering this question involves both analytical work over
existing forward models e.g. check continuity in specific haemodynamic response
models, and experimental work e.g. observing the distribution of locations ex-
pressed in the manifold subsequent to a particular stimulation of the brain, and
checking that it is possible to define a path among these locations without violat-
ing any physiological constraints considered. The specific demands to the cascade
of transformations have to be stated. Their impact on the computability of the
solution has to be established.

2. Under which topological restrictions an imposed metric over the Riemann manifold
does capture integrational (functional) features of the activity of the system entities
i.e. brain regions? And how these topological restrictions do arise from known
problem domain i.e. neurophysiological, constraints?

Disambiguation: Moving to integrational relations among system entities, being
embedded in a space of positive signature it is known that paths along the Rie-
mann manifold without any further constraints are unable to represent directional-
ity of the information flow, and thus only functional (associative) but not effective
(causal) aspects, can be encoded in the default manifold. However, it is conceiv-
able that imposing additional topological restrictions to the manifold, such as an
asymmetric distance function, can be harness to encode causal relations among
different manifold loci, hence travelling along the manifold can be restricted to
only those paths encoding pseudo-causal spatiotemporal relations. This question,
assumes a positive finding in the first question i.e. some manifold within a pos-
itive signature ambient space can encode segregational aspects of brain activity.
The particular case of a Riemann manifold is secondary, with other topological
abstractions also being possible. The question is however expressed in terms of the
Riemman manifold to reduce ambiguity.

Purpose: The purpose of the question is to establish an univocal direction for the
flow of information along a Riemann manifold. Since precedence is a necessary
(but not sufficient) condition for expressing causality, the natural geodesic metric
has to be abandon and a directional distance function where d(x, y) 6= d(y, x) is
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required. The compromise of relaxing any original metric might be obvious from
the mathematical point of view, but it is far from clear what the subsequent space
deformation does represent in physiological terms and its computational impact.
It may be the case that the pseudometric imposed has to consider the particular
semantics being encoded in the manifold.

Assessment of success: Answering this question requires analyzing the deformation
suffered by the manifold whenever a new distance function is imposed. Some
deformations are known in advance; e.g. imposing a 1-correlation pseudometric
projects to a hypersphere, but others, depending on the function are not. This
first analysis can be done either analytically or empirically from synthetic data.
But understanding the implications that the deformation has in physiological terms
can only be inferred from experimental interrogation. The same experiment carried
out to answer the first question can be further exploited here, and there is only
need for an additional analysis. Successful recovery of synthetic truths will be
considered sufficient to answer this question.

3. Under which conditions can the expressive power of causal manifolds, such as the
Lorentzian, be harness to express causal integrational (effective) relations among
system entities?

Disambiguation: Progressing to a space of negative signature, certain manifolds
already incorporate a causal structure thus enabling the exploration of causal in-
tegrational (effective) relations among brain regions. Hence analogous to the first
question, we formulate again the the interrogation regarding whether the domain
i.e. neurophysiological, construct does obeys the mathematical demands of the
chosen abstraction. This is far from trivial; getting into the unfamiliar world of
negative signature spaces gives new unsuspected meanings to familiar concepts.
Distance functions, for instance, can now yield negative values denoting prece-
dence. The geodesic along the manifold may again suffice to express the physio-
logical construct given the adequate semantics.

Purpose: The purpose of this question is three-fold. First, the mathematical rigour
has to be complied with, in a sense analogous to the first question. Second, these
mathematical concepts have to be reinterpreted according to the physiological con-
struct and still be meaningful. Third, assumptions computationally valid in pos-
itive signature spaces may no longer hold in negative signature spaces and thus
have to be reassessed.

Assessment of success: Answering this question requires a procedure similar to
that applied to answer the first question. Again analytical and experimental work
is required, and again, data from the first experiment can be reused to achieve
nomological validity. Only interpretation is updated within the new mathematical
framework. Sucess will be claimed if concurrent validity against the current gold
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standard for the analysis of effective connectivity, dynamic causal modelling can
be established.

1.5 Hypotesis

The naked computational hypothesis is that the retrieval of causal relations in a manifold
when the manifold has been severely distorted through a chain of (non-linear) transfor-
mations is a computationally feasible task as long as certain properties are maintained
through the deformations and such deformations are properly understood.

The analogous computational neuroscience hypothesis follows; If brain function abides
to the topological abstraction of a manifold, then the associated and causal relations un-
derpinning functional and effective connectivity can be expressed either as trips along
the manifold surface, or as full solutions captured at points in the manifold

1.5.1 Aim

The general aim of the research is to afford the development and assessment (verification
and validation) of a new topological approach for the modelling and retrieval of causal
relations among system entities while affording complex tasks from the observation of in-
direct markers of the individual activity by the specialized entities. This problem mimics
the requirements of the neurophysiological phenomenon of brain’s effective connectivity
when such neurophysiological phenomenon is interrogated by fNIRS neuroimage

Specific goals are:

• Analysis of the topological properties demandable to the cascade of transformations
involved in the indirect observation of the phenomenon. In the domain at hand,
this includes the neural and hemodynamic responses as well as the image formation
and reconstruction processes.

• Establishment of the adequacy of an existing distance function or development of an
appropriate distance function under which a manifold within a positive signature
space encodes the pseudo-causal relations. In computational neuroscience this
equates to express (pseudo-)effective connectivity.

• Exploitation of the causal manifolds expressive power and characterization of the
computational assumptions to be held.

• Concurrent and nomological validation of the proposed modelling approaches.

1.6 Assessment and scope

This research focuses on the development of the computational modelling approach for
guaranteeing successful retrieving of causal relations in topological spaces i.e. manifolds.
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The domain of application is the modelling of brain’s effective connectivity. Although the
thesis is inherently multidisciplinary requiring knowledge related to neuroscience, calcu-
lus, linear algebra and topology, this research will be on the development of algorithms
that permits encode the causal structure of manifolds.

1.7 Contributions

The main contributions of this research are expected to be the following:

• Exploration of how causal relations within a manifold are (or can be) maintained
through a number of non-linear deformations in terms of the topological properties
demanded.

• Foundations for topological modelling of brain function will be established

• Definition and establishment of topological and computational constraints to the
built manifolds to ensure (i) compliance with domain conditions, and (ii) feasibility
of the computability of the solution.

• Exploitation of existing, or imposition of, causal structure of manifolds to encode
brain’s effective connectivity

1.8 Chapter summary

This chapter aimed to provide the reader with an overview of the intended research.
Major elements of science and the scientific method, such as the research questions and
hypothesis, the goals and expected contributions and the significance and rationale of
the research have been put forth. The rest of the document provides theoretical and
referential support as well as preliminary evidence to the feasibility of the enterprise.
Also intended methodology is further detailed.



10 CHAPTER 1. INTRODUCTION



Chapter 2

Background

In this section, the notation and some basic definitions needed to understand the follow-
ing sections are given.

2.1 Basic definitions

Some notation is introduced:

1. Let R be the set of real numbers. If n is a positive integer, then

R
n = R× R× . . .× R

︸ ︷︷ ︸
n−times

,

is the set of all n−tuples of real numbers. Thus, if a ∈ Rn

a = (a1, . . . , an), ai ∈ R.

2. For ui, i = 1, 2, . . . n, let ui be the natural coordinate (slot) functions of Rn, i.e.,
ui : R

n → R by ui(a1, a2, . . . , an) = ai ∈ R.

3. Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be two points in R
n. We defined

d(a, b) =

[
n∑

i=1

(ai − bi)
2

] 1
2

,

and is called the Euclidean distance.

4. Let x be a point in Rn and ǫ > 0 a radius, then ǫ defines a neighorhood of x as
Vǫ(x) = {y ∈ R

n|d(x, y)| < ǫ}

5. Let X be a set, by 2X we mean the set of all subsets of X , which is called the
powerset.

11
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6. Let f be a function f : (a, b) → R. The function f is continuous at the point x0 if

• x0 ∈ (a, b) i.e. x0 belongs to the domain of f

• f(x0) ∈ R

• limx→x0 f(x) exists, and

• limx→x0 f(x) = f(x0)

7. Let S and S ′ be two set. A map from S to S ′ is a continuous function f : S → S ′

8. Let K be a subset of the complex numbers R or C. K is a field if it satisfies the
following conditions:

• If x, y ∈ K, then x+ y and xy are also elements of K

• If x ∈ K, then −x is also an element of K. If furthermore x 6= 0, then x−1 is
an element of K.

• The elements 0 and 1 are elements of K

9. Consider R4 and let {e1, e2, e3, e4} be the canonical basis. If x = (x0, x1, x2, x3),
y = (y0, y1, y2, y3) are points in R4, then the scalar product defined by

〈x, y〉 = −x0y0 + x1y1 + x2y2 + x3y3,

is called the Minkowski metric. It can be proved that Minkowski metric signature
is given by (-1,1,1,1);

10. The restriction of a function f is a new function f |A obtained by choosing a smaller
domain A from the original function f .

11. A function d : S × S → R is called a metric on S, if for every set of points
s1, s2, s3 ∈ S it satisfies the following

(a) d(s1, s2) > 0 if s1 6= s2, d(s1, s1) = 0

(b) d(s1, s2) = d(s2, s1)

(c) d(s1, s3) ≤ d(s1, s2) + d(s2, s3)

Then the pair (S, d) is called a metric space, where S is a non-empty set and d
is a metric. If instead of property (a) the function satisfies (a’): d(s1, s2) = 0 if
s1 6= s2 then the distance function d is called a pseudo-metric.

12. Let A ⊂ Rn be an open set and f a real-valued function f : A ⊂ Rn → R, then it
is said that f is a map of differentiable class r on A with r ∈ N+, and denoted
Cr(A), if it possesses continuous partial derivatives on A of all orders r.
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a If f is merely continuous in A (it has no derivatives) then f is of class C0 on
A.

b If f is real and analytical1 of A, then f is of class C∞ in A, and it is said to
be smooth.

2.2 Spaces

Definition 2.2.1. An R
n is a Euclidian space if its metric (distance function) is the

Euclidean distance.

Definition 2.2.2. A vector space V over the field K is a set of objects which is defined
by two maps:

• a map (x, y) → x+ y from V × V into V called addition

• a map (λ, x) → λy from K× V into V called multiplication by a scalar

These maps (or algebraic operations) must satisfy the following axioms:

1. x+ y = y + x commutativity

2. (x+ y) + z = x+ (y + z) associativity

3. There exists an element 0 in V such that x+ 0 = x for all x ∈ V . This element 0
is called the zero vector.

4. For every element x ∈ V , there exist an element −x ∈ V such that x+ (−x) = 0.
The element −x is called the opposite of x.

5. λ(x+ y) = λx+ λy

6. (λ+ µ)x = λx+ λµ

7. (λµ)x = λ(µx)

8. 1ẋ = x for all x ∈ V

The elements of a vector space are called vectors

Definition 2.2.3. Let E be a finite dimensional vector space finite dimensional. A
symmetric bilinear form on E is an application R−bilinear g : E×E → R such that
g(u, v) = g(v, u) for all u, v ∈ E. If g further satisfies the following condition

1A function is analytic if and only if its Taylor series about xo converges to the function in some

neighborhood for every xo in its domain.
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i) g(u, u) > 0 ∀ u 6= 0, g is called positive definite

ii) g(u, u) < 0 for all non zero vector u ∈ E, g is called negative definite

iii) g(u, u) = 0 ∀ v ∈ E, implies u = 0, g is called nondegenerate.

We use the following notation interchangeably g(u, v) = 〈u, v〉.

Definition 2.2.4. A topology in X is a nonempty collection τ ⊆ 2X of subsets of X
called open sets, which satisfy the following four axioms:

1. The empty set ∅ is open

2. The set X itself is open

3. The union of any family of open sets is open

4. The intersection of any two ( and hence of any finite number of) open sets is open

The pair (S, τ) is called topological space.

Definition 2.2.5. Let g : E × E → R be a bilineal symetric form. The index ν of g
is the integer positive number that is the dimension of the largest subspace F ⊂ E, on
which g|F×F is negative definite. Where g|F×F means the restriction function of g on
F × F ⊂ E × E. It should be observed 0 ≦ ν ≦ n = dim(E) and ν = 0 if and only if g
is positive definite.

Definition 2.2.6. A scalar product g on a vector space E is a nondegenerate symmetric
bilinear form. For example, if the scalar product is also positive definite is called inner
product.

Definition 2.2.7. Let E 6= {0} be a vector space with a scalar product g and consider
the associated diagonal matrix D of g relative to an orthonormal basis. The diagonal
elements of D, denoted by (ε1, . . . , εn), is the signature of g.

Definition 2.2.8. If X and Y are topological spaces, a homeomorphism from X to
Y is a bijective map ϕ : X → Y such that both ϕ and ϕ−1 are continuous. If there
exists a homeomorphism between X and Y , say that X and Y are homeomorphic or
topologically equivalent.

Definition 2.2.9. The couple (R4, 〈 , 〉), where 〈 , 〉 is the Minkowski metric, is called
Minkowski space.

Definition 2.2.10. An event is something that happens instantaneously at a single
point in Minkowski space.



Chapter 3

Theoretical Basis

The manifolds are topological spaces than locally “look the same” as Euclidean spaces.
Every point of a topological manifold has an neighborhood in which we can estab-
lish a mapping (coordinate system) to an open subset of Rn. This fact allow us use
concepts of Rn on manifolds at least locally (that is, at least for each neighborhood)
Guillemin & Pollack (2010),(Guillemin & Pollack, 2010). A manifold can be considered
as an object composed of open subsets that “look the same” as open subsets of Rn. Some
examples are showed in Figure 3.1. In Figure 3.2 is depicted a topological region that is
not a manifold.

Figure 3.1: Manifolds examples. U ⊆ M is a neighborhood of point p ∈ M , if there is
a disk D such that p ∈ D ⊆ U then is possible a map to Rn. Figure reproduced from
(Guillemin & Pollack, 2010)

3.1 Differentiable manifolds

Before giving the formal definition of a manifold, first some concepts is introduced. Let
V be a Euclidean space and M a subset of V . A V−atlas of class Ck on M is a

15
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Figure 3.2: Example of a shape that is not a manifold. The cone in the example is not
a manifold because there is no arbitrary neighborhood around the vertex point which
is contained within the cone. In other words, there are points in D that are not in M.
Figure reproduced from (Guillemin & Pollack, 2010)

collection a of pairs (Ui, φi) called charts, where Ui is a subset ofM and φi is a bijective
map of Ui onto an open subset of V subject to the following conditions (Figure 3.3):

A1. For any (Ui, φi) ∈ a and (Uj , φj) ∈ a the sets φi(Ui ∩ Uj) and φj(Ui ∩ Uj) are open
subsets of V , and the maps

φi ◦ φ
−1

j : φj(Ui ∩ Uj) → φi(Ui ∩ Uj)

are differentiable of class Ck.

A2.
⋃
Ui =M .

The functions φi ◦ φ
−1

j are called the transition functions os the atlas A.
Let A1 and A2 be atlases on M . We say that they are equivalent if their union

A1 ∪A2 is again an atlas on M .

Definition 3.1.1. A set M toghether with an equivalence class of atlases onM is called
a differentiable manifold.

Definition 3.1.2. LetM be a manifold of class C∞ andm ∈M a point on the manifold.
The tangent vector X is a function X ∈ C∞(m) such that it satisfies the following:
f,g ∈ C∞(m), b ∈ R

1. X(f + g) = Xf +Xg

2. X(bf) = b(Xf)

3. fg = (Xf)g(m) + f(m)(Xg)

Where C∞(m) is the set of real valued function that are on some neighborhood of m.

Definition 3.1.3. The tangent space to M at m ∈M , denoted by Tm(M), is the set
of all tangent vectors at m ∈M .

The tangent space Tm(M) is a vector space over R.
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Figure 3.3: An n-coordinate pair (U, ϕ) on M is called a chart. ϕ is a homeomorphism
ϕ : U ⊂ M → Rn onto an image V = ϕ(U) which is an open set in Euclidiean space.
Figure reproduced from (Loomis & Sternberg, 1968).

3.2 Riemmannian manifold

Definition 3.2.1. A Riemmannian manifold is a C∞ manifold M on which one has
singled out a C∞ real valued, bilinear, symmetric, and positive definite function 〈 , 〉,
on ordered pairs of tangent vectors at each point. Thus if X, Y and Z are in M , then
〈X, , Y, 〉 and is a real number and 〈 , 〉 satisfies the following properties Hicks (1965)
Thorpe (1994):

a) Symmetric. 〈X, Y 〉 = 〈Y,X〉

b) Bilinear. 〈X + Y, Z〉 = 〈X,Z〉 + 〈Y, Z〉 and 〈 aX, Y 〉 = a 〈X, Y 〉 for a in R

c) Possitive definite. 〈X,X〉 > 0 for all X 6= 0

Definition 3.2.2. When c) is replaced by c’) For all X , 〈X, Y 〉 = 0 implies Y = 0 then
M is a semi-Riemannian (or pseudo-Rimannina) manifold.

In either case, the function 〈 , 〉 is the metric tensor. Notice the word “metric” is not
referring to a metric function (distance function) in the topological sense. The metric
tensor will allow us define lengths, angles and distances.
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3.3 Lorentzian Manifold

Definition 3.3.1. A pseudo-Riemannian manifold is called Lorentzian manifold if g has
signature (−1, 1, . . . , 1).

3.4 Manifolds as causal spaces

The relation of causality between points on the manifold is studied as models of space-
time often within pseudo-Riemannian manifolds. Mathematically the concept of a space-
time in a pseudo-Riemannian manifold are described with coordinate systems that have
three spatial dimensions and one temporal dimension. It is impossible to picture a four-
dimensional space, and thus it is common to make use of space-time diagrams (also known
as Minkowski diagrams), where there is (usually) a vertical time axis and a horizontal
spatial x axis.

The set of all events that occurred, are occurring or will occur in the universe at
any given time is called the Space-Time. The motion of a particle is represented by a
trajectory in the space-time. A possible analogy with brain function arise naturally; the
particle may represent a neural firing at certain brain location which is transmitted (it
travels along the space-time manifold) to another brain region.

In order to describe the notion of causal and chronological precedence on semi-
Riemannian manifold, is necesary to have two partial orderings: the causality relation
denoted by ≺ and the chronology≪. An event x causally precedes an event y if the inter-
pretative principles would allow an occurrence at x to influence what happens at y, or if a
message could be transmitted from x to y. The chronological precedence corresponds to
the possible time-ordering of events on the world-line of an idealized observer whose ve-
locity is less than that of light (see Kronheimer & Penrose (1967); Bombelli et al. (1987);
O’neill (1983)).

3.5 Brain connectivity

The brain function abides by two fundamental principles: segregation and integration
Frackowiak et al. (2004); Zamora-López et al.. The principle of segregation or special-
ization refers to the organization of neurons in specialized groups distributed in different
regions of the cerebral cortex i.e. different regions of the brain taking responsibility
for specific basic fundamental tasks whether sensorymotor or cognitive, whereas the
functional integration is the mechanism that leads to the coordinated activation of the
segregated brain Friston (1994) tag (2004) permitting the execution of more complex
tasks. Functional integration refers to the interactions among specialised neuronal pop-
ulations and how these interactions depend on the sensorimotor or cognitive context. The
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study of functional integration is carried out majorly through three types of connectivity
(Horwitz, 2003):

• Anatomical or structural connectivity referring to the study of physical con-
nections among neural populations

• Functional connectivity defined as a associative dependence of neuronal activity
between anatomically separate brain regions

• Effective connectivity that concerns the causal influence that a brain region
exerts over another, either at a synaptic or population level.

Functional connectivity is the manifestation of the phenomenon of integration that
dictates how different brain regions work together to carry out certain tasks. Depending
on the type of collaboration that can be quantified by statistical dependence, correlation,
coherence etc. The type of collaboration can be a simple co-activity (which for example
allows us to do more than one task ”while”), or require specific coordination between
several regions (which for example allows us to perform complex tasks). Both types of
connectivity are required; the first is the functional (or merely associative) connectivity,
and the second is known as effective (or causal). In other words, while the functional
connectivity is trying to explain the associative units, in effective connectivity directed
causal influence between brain regions analyzed.

3.5.1 Brain activity

When a neuron fires a number of effects occur in the neuron and its surroundings. These
effects allow different imaging techniques to observe the brain function, either directly
or indirectly.

The nervous system transmits the information by means of electrical signals. The
action potential is a temporary change in electrical potential across the neuron mem-
brane, from negative to positive and then back to negative (Bear et al., 2007; Kandel et al.,
2000) that permits the neuron either to initiate an activity or to pass incoming informa-
tion. Neurons at rest stores a voltage of about −65mV,. When the neuron activates, an
exchange of sodium (Na +) and potassium (K +) ions through the membrane of neurons
alters the voltage to produce an electrical impulse of approximately 38mV (the action
potential). The electrical signature of the neuron firing is illustrated in Figure 3.4.

The neuron metabolic activity enabling the neuron firing requires oxygen. The neu-
rovascular coupling is the process regulating the coupling between neuronal activity
(energy demand) and local blood flow (energy supply) Rosengarten et al. (2001). As the
neuron becomes active, it starts consuming the oxygen in its surroundings producing
a transient increase of reduced haemoglobin which is quickly followed by the flooding
of the brain region with oxygenated blood leading to the characteristic increase in the
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Figure 3.4: The action potential is a redistribution of electrical charge across
the neuron membrane. Depolarization of the cell during the action potential is
caused by the influx of sodium ions across the membrane, and repolarization is
caused by the efflux of potassium ions. This process occurs within a timeframe
of 10ms including the neuron refraction period. Figure reproduced from: http :
//www.uic.edu/classes/bios/bios100/lectures/action potential.jpg

concentration of oxygenated hemoglobin (HbO2) and the decreased of the deoxygenated
hemoglobin (Hb) Leff et al. (2011); Meek et al. (1995). The approximate time of the
transient stage from the start of neuronal activity and the flooding of HbO2 is approx-
imately 3-5s. The characteristic waveform of the blood oxygenation level dependent
(BOLD) hemodynamic response Kamran et al. (2015) Çiftçi et al. (2008) is show in Fig-
ure 3.5 .

In the literature there are several models that approximate the hemodynamic re-
sponse such as that of Buxton et al. (2004) where brain haemodynamics is expressed
in terms of the familiar quantities: Cerebral blood flow (CBF), Cerebral blood volume
(CBV) and Cerebral metabolic rate of oxygen (CMRO2), or modeled to a summation
of gamma variate functions whose parameters are optimized experimentally to form a
canonical hemodynamic response function (HRF) Friston et al. (1998). Other physio-
logical phenomena that are sometimes included in the model is the systemic response in-
cluding for example noise, heartbeat and breathing among others Diamond et al. (2006);
Zhang et al. (2005) among others.

3.6 Functional near-infrared spectroscopy (fNIRS)

One way to study the brain function is by means of functional neuroimaging 1 which per-
mits examination of the human brain in vivo noninvasively. Different neuroimaging tech-

1others included in-vitro cultivation of neurons, ex-vivo hystophysiological analysis of in-vivo in-

vasirely implantation of micro-arrays among others
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Figure 3.5: The classical signature of the BOLD hemodynamic response. The transient
initial dip, reflecting an increase in oxygen consumption prior to the onset of increased
blood flow and the peaks a few seconds after the onset of the stimulation (event stimulus
applied at time t = 0s) can be appreciated the positive component of the HRF is very
robust and ofen used to produce maps of functional activity. Figure reproduced from:
http : //www.openwetware.org/wiki/Image : HRF.gif

niques exploit different physical phenomena to reconstruct the direct neural activity or
an indirect marker of it. Functional near-infrared spectroscopy (fNIRS) is a non-invasive
neuroimaging technique Villringer et al. (1993) based on diffuse optics. The brain func-
tional information is decoded through the interpretation of the variation in the optical
properties of previously irradiated near-infrared (NIR) light Ferrari & Quaresima (2012).
NIRS monitors the regional cerebral blood flow (rCBF) variations through the changes
in absorption of the NIR light at wavelengths between 650−950nm. Using fNIRS, brain
activity is indirectly measured through the hemodynamic responses associated by the
neurovascular coupling as explained in the previous section. Once the photons are radi-
ated into the human head with a laser emisor (source), these cross through the different
layers of the head (skin, skull, meninjes, grey and white matter, etc.) until absorbed or
eventually exiting the head. Those photons having a higher probability of detection by
the (paired) photodetectors are the ones at the tip of the banana shaped scattered beam
as illustrated in Figure 3.6.

fNIRS measures optical density (OD) changes at two (or more) wavelengths, with
the main changing chromophores responsible for those changes being the oxygenated
and reduced hemoglobins which happens to be markers of brain hemodynamics in turn
proxy of brain activity. The reconstruction of the concentration changes of the chro-
mophores of interest is achieved using the modified Beer-Lambert Law Cope & Delpy
(1988); Haeussinger et al. (2014); Sassaroli & Fantini (2004).
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Figure 3.6: In fNIRS a photo-detector placed approx 2.5 cm away from the light source
collects photons that are not fully absorbed and that have travelled along the banana
shaped path between the source and detector. The interoptode distance regulates the
depth at which the detector is more sensitive permitting probing regions 1-2 cm deep
like the grey matter where most brain activity occurs. Figure modified from http :
//www.hamamatsu.com/jp/en/technology/lifephotonics/healthcare/trs/index.html
and http : //www.saberesyciencias.com.mx/sitio/component/content/article/10 −
portada/522− la− neuroimagen− optica− soluciones− computacionales − a− un−
problema− fisico



Chapter 4

Related Work

This section first presents introductory examples of the use of differential manifolds for
analysing a mechanical and a gravitational problem helping to illustrate how topology
and manifolds are used for expressing the solutions of physical phenomena. Later, general
work related to brain connectivity is presented. Finally the analysis of causality in the
brain i.e. effective connectivity, are reviewed more closely.

4.1 Simple and double pendulum

Consider a simple pendulum confined to a plane as depicted in Figure 4.1. Every
possible position of our system is completely determined by the magnitude of the angle
φ in [0, 2π]. A single parameter is required to describe the magnitude of such angle. If
the distances segment OA is normalized to length one1, that corresponds to a position
on the circumference that is usually denoted by S1. The space of all possible states of
our mechanical system is thus a manifold of one dimension, namely the circumference
denoted by S1.

Now consider the double pendulum in Figure 4.2. Every possible position is com-
pletely determined by the magnitude of the angles φ and ψ. The space of all possible
states of the double pendulum is described by S1×S1 and this geographically corresponds
to the coordinates of a torus. In physics, it is common to indicate that the mechani-
cal system has two degrees of freedom and the space of possible solutions is sometimes
referred to as the configuration space.

Points over the manifold may contain other information, such as the speed of move-
ment of the particles. For example, suppose we have a particle that can move freely on
a circle with an arbitrary velocity. The state of the system is described by two data
items: the position of the point on the circle and the velocity at a given instant. Note
that the direction of the movement is restricted i.e. the speed vector is irrelevant, not
adding additional parameters. The manifold of system states (the configuration space)

1Normalization is only convenient, but note that it does not further introduces another parameter.

23
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Figure 4.1: Simple Pendulum. The pendulum in a) consists of the segment OA; the
point O remains immobile while the segment OA itself turns freely in a fixed plane
at a fixed distance around O. The circumference in b) represents such set of possible
locations in the plane and is denoted as Sn = (x1, . . . , xn+1)|x

2
1 + x22 + . . .+ x2n+1 = 1 is

this particular example. Figure reproduced from Aleksandrov et al. (1999).

Figure 4.2: Double pendulum. The pendulum in a) consist of two segments OA and AB
hinged together at A; the point O remains immobile, the segment OA turns freely in a
fixed plan around O, and the segment AB turns freely in the same plane around A. The
torus in b) is the manifold denoted by S1 × S1 and permits codification of all possible
solutions to the system. Figure reproduced from Aleksandrov et al. (1999).

of this mechanical system is a cylinder; the product of a circle with a straight line. In
general, the possible configuration space of a physical system inherently have a structure
of a differentiable manifold of dimension n Aleksandrov et al. (1999).

Under this fashion using a manifold-based modelling, solutions to the system corre-
spond to specific locations in the manifold.
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4.2 The four-dimensional space-time for relativity

Relativity explains gravity as an effect of the bending of spacetime in the vicinity of a
massive object Collier (2012). A natural way to encode the spacetime are four dimen-
sional manifolds in the Minkowski space Collier (2012), or perhaps more sophisticated 5
dimensional manifolds with a restricted smooth structure and an appropriate group of
coordinate transformations Krym (2002). Usually, here locations in the manifold do not
represent full solutions of the system but instead they only represent specific events. In
a scenario analogous to the domain of this research, causal relations among events are
soujht.

Under this fashion using a manifold-based modelling, solutions to the system corre-
spond to world-lines or trips along the manifold. Note the contrast with the mechanical
example above.

4.3 Manifold based analysis in neuroscience

The hypothesis expressed in this protocol; that the brain function abides the construct
of manifold arises from previous work which have hinted that the brain function comply
with the mathematical requirements of specific manifolds; continuous, differentiable,
metric, etc. This section reviews this previous empirical modelling of neurophysiologic
phenomena exploiting topological tools, which is further summarized in Table 4.1.

Table 4.1: Summary of manifold based analysis in neuroscience. Projection on the
tangent space Euclidian (PTSE)

Name Distance function Projection / Rendering Manifold

Friston et al. (1996) 1−correlation cMDS Topological (not indicated)

Leff et al. (2007) geodesic cMDS (Isomap) Riemannian

Ng et al. (2014) Covariance MWT,PT Riemannian

Varoquaux et al. (2010) Covariance PTSE Riemannian

Dodero et al. (2015a) SD LEM Riemannian

Dodero et al. (2015b) Graph Laplacian LEM Grassman

In 1996, Friston et al. (1996) expressed the brain function in a k-dimensional space
where points on the manifold represented local hemodynamics and used as distances
between the points the correlation between events i.e. voxel timecourses. This projected
the brain function to a hypersphere that Friston et al branded the functional space.
Rendering of the manifold was achieved by classical multidimensional scaling (cMDS)
Torgerson (1958) permitting exploration of the functional connectivity. This was the
first example to the author’s knowledge capitalizing on topological modelling to encode
a neurophysiological phenomenon.
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Much later, Leff et al. (2007) also studied brain activity utilizing manifolds. Dis-
tinctly from its predecessor Friston et al. (1996), this method exploited the geodesic of
the manifold to explore the functional phenomenon. Isomap2 was used Tenenbaum et al.
(2000) for recovering the intrinsic dimensionality of the non-linear structure of the neu-
roimaging data which permitted discrimination of expertise related differences in brain’s
response to a surgical knot-tying task. More recently, the geometric properties of the
geodesic distance over symmetric positive definite (SPD) matrices forming a Rieman-
nian manifold were exploited again to study functional connectivity. In Ng et al. (2014,
2015), the authors attempted to retrieve functional connectivity patterns before and af-
ter a certain linguistic intervention in a longitudinal study. To achieve their goal, they
expressed the functional connectivity as features of the covariance matrices among the
neuroimage scans. In these papers, the covariance matrices live on the space of the pos-
itive semidefinite cone Varoquaux et al. (2010). They treated the positive semidefinite
cone as a Riemannian manifold and projected the covariance estimates onto a common
tangent space to this manifold. Each point on the manifold surface corresponded to
one subject, while the projection of the tangent space to a Euclidean space is a diffeo-
morphism generated by the matrix whitening transport (MWT) and parallel transport
(PT) Thorpe (1994). This is a more sophisticated exploitation of the expressive power
of manifold-based modelling, but causal relations were not sought.

Finally, Dodero et al. (2015b) recently took advantage of manifold embedding tech-
niques to kernelize a classification task. In particular, they used kernel Support Vector
Machine (SVN) Shawe-Taylor & Cristianini (2004) applied to connectivity matrices for
their classification task. In both approaches, points on the manifold are connectivity
matrices i.e. full system solutions, and the manifold were explored (rendered) with a dif-
feomorphism dictated by the Log-Euclidean metric (LEM) Arsigny et al. (2005) where
distances were given by the Stein divergence (SD) Sra (2011) for Dodero et al. (2015b)
kernel based approach using projection metric on a Grassman Manifold3 respectively,
both computed using regularized Laplacians.

Despite these modelling attempts, none of the previous work actually produced any
evidence whatsoever that the brain function behaves as a manifold. This, in all cases,
was simply assumed.

4.4 Modelling of brain’s effective connectivity

The analysis of effective connectivity has not yet been attempted by topological means.
Commonly, coherence based, probabilistic and statistical approaches dominate the land-
scape. This section and the companion Table 4.2 summarize these.

2Isomap is actually the cascade of the calculation of the geodesic and the subsequent projection with

classical multidimensional scale.
3Given a space Rn, the Grassman manifold is the set of linear subspaces of dimension k, 0 < k ≤ n

does not lie on the Euclidean space but on the Riemannian manifold.
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Table 4.2: Summary of popular modelling approaches for effective connectivity.
Name Approach Context Temporal Precedence Neural Interactions

DCM (Friston et al., 2003) Differential equations X X Dynamic

SEM Büchel & Friston (1997) Differential equations X Linear

DTFKaminski & Blinowska (1991) Coherence X Linear

PDC Baccalá & Sameshima (2001) Coherence X X Linear

Proposal Topological X X Dynamic

Structural equation modeling (SEM) Büchel & Friston (1997); Biddle & Marlin (1987)
is a multivariate, hypothesis-driven technique that is based on structural models (i.e.
differential equations) representing a hypothesis about the causal relations among sev-
eral variables. For example, variables are the measured blood oxygen level-dependent
(BOLD), brain regions and the hypothetical causal relations are based on anatomically
plausible connections between the regions. Under SEM the causal relationships are not
inferred from the data but assumed a priori, and only confirmatory analysis is carried
out. Despite being oblivious to temporal information, SEM remains a popular approach
for the analysis of effective connectivity since it was first introduced for this use by
McIntosh & Gonzalez Lima (1994).

Coherence based methods are routinely used to retrieve the causal graph in neuroim-
ages. The directed transfer function (DTF) Kaminski & Blinowska (1991) technique is a
full multivariate spectral measure used to determine directional influences between any
given pair of signals in a multivariate data set. DTF is based on the spectral Granger
causality Kamiński et al. (2001), according to which an observed time series s1(t) causes
another time series s2(t) if the knowledge of s1(t)’s past significantly improves prediction
of s2(t). The relationship between these two time series is not reciprocal, so it is pos-
sible to determine the direction of information flow between the time series. A closely
related coherence based approach, also inspired in Granger causality is Partial directed
coherence (PDC) Baccalá & Sameshima (2001) which differs from DTF in its ability
to capture the transitive relations; DTF see transitive relations but cannot appreciate
the intermediate path whilst PDC only see pairwise relations but cannot see transitive
relations.

Dynamic Causal Modeling (DCM) is an ad-hoc modelling approach that has become
the de facto standard for the analysis of brain effective connectivity Friston (2011).
DCM (Friston et al., 2003) is a Bayesian framework for estimating experimentally in-
duced changes in effective connectivity, once the causal model has been translated from
neuronal activity to predicted data, it can be compared to the observed data to esti-
mated the unknown parameters of the model, including the synaptic couplings. Like
SEM, DCM is a hypothesis-based confirmatory approach, the latter being carried out
using a Bayesian framework. DCM is distinguished from alternative approaches not just
by accommodating the nonlinear and dynamic aspects of neuronal interactions, but by
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framing the estimation problem in terms of perturbations that accommodate experimen-
tally designed inputs.

4.5 Transformations

4.5.1 Neural response models

Spike generation with the dynamics of the Hodgkin-Huxley model is a mathematical
model of current flow through ion-selective channels in neural membrane Beeman (2014)
which describes how action potentials in neurons are initiated and propagated to another
and describes the time behavior of the intracellular membrane potential and the currents
through potassium (K) and sodium (Na) channels with simple first-order ordinary dif-
ferential equations Gerstner & Kistler (2002).

Heeger’s Poisson Model of Spike Generation Heeger (2002) proposes that in the cor-
tex, the timing of successive action potentials is highly irregular. Then, the irregular
interspike interval reflects a random process and implies that an instantaneous estimate
of the spike rate can be obtained by averaging the pooled responses of many individual
neurons. The spike train would be completely described as a particular kind of Poisson
process.

4.5.2 Hemodynamic response models

The hemodynamic response refers to the changes in blood irrigation locally to an active
brain region and it is mediated by the neurovascular coupling. This response alters
the flow (CBF) and volume (CBV) of blood subsequent to changes in the metabolic
rate of oxygen (CMRO2) following neural firing, in turn altering the baseline balance
of oxygenated and reduced haemoglobin. This hemodynamic response is critical for
those neuroimaging modalities that capitalize on these indirect hemodynamic markers of
brain activity. The different models expressing the relation between the neural activity
and these hemodynamic changes are referred to as hemodynamic response functions
(HRF), but their specific form, not only depends on the neurovascular process itself but
also on the neuroimaging modality observing it. Hemoglobin (Hb) is diamagnetic when
oxygenated and paramagnetic when reduced. In functional magnetic resonance imaging
(fMRI), the presence of deoxyhemoglobin alters the local magnetic susceptibility. The
signature of such alteration is known as the blood oxygen level dependent (BOLD)
signal, and this effect is a valuable tool for mapping brain activation. In Buxton et al.
(2004) the mathematical relation between the hemodynamic parameters CBF, CBV and
CMRO2 and the fMRI observable BOLD signal is established resulting in a biologically
elaborated version of the HRF for fMRI. A much simpler4 statistical description of the
BOLD signature, is that comprised the sum of two gamma functions Friston et al. (1998),

4And popular due to the success of the statistical parametric mapping analysis of brain activity.
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but this one lacks the biological foundations. In diffuse optical imaging, the modelling
of the hemodynamic response accounts for temporal changes observable in the remitted
spectra due to those changes in tissue absorption in turn attributable to changes in
haemoglobin concentrations (of both, HbO2 and HbR) taking advantage of the different
absorption coefficients exhibited by the two haemoglobin species Huppert et al. (2006),
moving from the univariate domain of BOLD-fMRI to the multivariate domain of fNIRS.
Literature also offers different models of the optical HRF. Zhang et al Zhang et al. (2005)
described the optical HRF in terms of a basis function expansion in a joint spatio-
temporal reconstruction of the diffuse optical imaging. Diamond et al Diamond et al.
(2009) built a sophisticated biologically plausible model of the optical HRF taking into
account some of the systemics including heart rate, arterial and venous compliance. A
summary of these is presented in Table 4.3. Regardless of the neuroimaging modality,
the objective of hemodynamic response models is to have a function that describes the
expected recognizable local signature recorded by the neuroimage when a certain neural
population fires. Collaterally, it further helps to separate out the background systemics
in neuroimaging data.

Table 4.3: Summary of popular modelling approaches for hemodyanmic response.
Name Type Approach

Buxton et al. (2004) BOLD Differential equations
Friston et al. (1998) BOLD Statistical
Zhang et al. (2005) Optical Function expansion

(Diamond et al., 2006) Optical Differential equations

4.5.3 Image reconstruction models

The formation of an image is the consequence of some form of radiation interacting with
matter, and in the case of diffuse optical imaging, and its neural version fNIRS, the
interaction of electromagnetic radiation with one or more internal optical characteristics
of the tissue Arridge & Schweiger (1997). As shares of the radiation abandon the tis-
sue and reaches the photodetectors, this energy is transduced most often into electrical
recordings. The necessary companion to the image formation process is therefore the
image reconstruction, translating the sensor output into the histophysiological magni-
tudes of interest. In the case of fNIRS, the changes in hemoglobin concentrations. The
transport of radiation in tissue ruling the image formation is dictated by the Radiative
Transport Equation (RTE) Branco (2007) ; a balance equation that has into consider-
ation the changes in energy flow, in time and in an infinitesimal volume, due to gains
of incoming energy by a light source or by scattered photons and energy losses due to
photons leaving the volume or absorbed energy. The analytical complexity of the RTE
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means that exact solutions are limited in practice to extremely simple geometries Branco
(2007). Hence, a number of approximations, numerical like diffusion theory or Kubelka-
Munk, and stochastic like Monte Carlo or RandomWalk have been developed. In fNIRS,
arguably the most successful of these approximations to model image formation is the
Modified Beer-Lambert Law (MBLL) Delpy et al. (1988). Its predecessor, the Beer Lam-
bert law describes the loss of light intensity as radiation travels through a non-scattering
medium i.e. attenuation is attributable only to absorption. Since biological tissue is
highly scattering, the MBLL incorporates a factor that accounts for tissue geometry and
light attenuation due to scattering so that scattering can be considered constant, and
then compensates this assumption by adding the Differential Path-length Factor (DPF)
that accounts for the increased distance that the light travels Scholkmann et al. (2014).
Having chosen a forward model of radiation transport to express the image formation,
the model has to be inverted so to recover tissue parameters from the space of sensor
outputs by a companion image reconstruction approach. In the case of MBLL, the recon-
struction i.e. the inversion method, is simply the system of equations derived resulting
from clearing the concentration of the chromophores of interest. For n chromophores,
the equation should be evaluated at n different wavelengths. Common options for im-
age reconstruction approaches include linear methods such as the perturbation method
based on inverting the Jacobian of the system, and non-linear methods like gradient-
based reconstruction and Newton-like methods Herrera-Vega & Orihuela-Espina (2015).
An alternative strategy is the computation of the so called colouration map. The recon-
struction based on the colouration map re-expresses the inverse problem as an optimiza-
tion problem whereby the vector of recovered parameters is the one whose precomputed
associated remitted spectra best fits the observed spectra.

4.6 Chapter summary

The opening sections of the chapter offer a wide range of manifold based modelling
possibilities whereby locations in the manifold in each case represent a different entity.
For those closer to the domain at hand, regardless of the opted methodology, none of
these previous works produced any evidence that the brain behaviour was confined to
the manifold where solutions were expressed; this was simply assumed as highlighted.
However, the insightful reader would quickly appreciate from these works how the fluc-
tuations of the underlying behaviour from one point to a neighbour point within the
assumed manifold were smooth, suggesting a continuous and differentiable behaviour of
the system, both properties to be expected in a locally flat object. Computationally this
leaves much to explore as the properties of the input space is fully unknown.

Also, although in external domains e.g. relativity, causality has been a driving force
to exploit manifolds, this still seems underexplored in neuroscience. The computational
implications of imposing causally inspired deformations to the manifold or instead opting
for exploiting the causal structure naturally present in the manifold with negative signa-
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ture remain unknown. It is anticipated that it is actually the specific choice of possible
alternatives in the chain of transformations that are likely to dictate the computational
consequences.

The manifolds of Riemann spaces exist in a positive symbol that are more intuitive
and which is easier to operate. While Lorentz manifold incorporate inherently causality
interpretation is not trivial. Modeling on Riemannian structures could be a sufficiently
good approximation given certain conditions that are to be explored in this thesis.
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Chapter 5

Research proposal

In this chapter the methodology intended for the development of this research is pre-
sented. Also, the experimental design for the collection of in-vivo data, schedule (Figure
5.1) and publications plan are further described.

5.1 Methodology

The following describes the methodological steps intended for the development of the
proposed research:

1. Familiarization with computational neuroscience

Familiarization with the necessary background knowledge on topology, vector cal-
culus, neurophysiology and neuroimaging as well as computational modelling in
neuroscience (i.e. computational neuroscience). Collaterally advances will be made
towards exploting different representation on neurological signals as a cloud of
points in space.

2. Transformations among spaces

Selection of a set of appropriate kernels (transformations among spaces) for the
stimulus train, the neural firing, the hemodynamic response and the optical imaging
formation and reconstruction. Elaboration of these transformations is not the aim
of the thesis, so suitable ones will be taken from literature. The task is not so
much the development of new mappings but the characterization of the topological
properties of the kernels chosen, i.e. the deformation they impose on the manifold.

3. Generation of forward synthetic scenarios for verification purposes

Synthetic scenarios will be generated. These scenarios will have latent causal rela-
tions between variables. The proposed models in subsequent steps of this method-
ology will be verified against this dataset for which the ground truth is known.

33



34 CHAPTER 5. RESEARCH PROPOSAL

One possible approach for the generation of the synthetic scenarios is using differ-
ential equations as in Kamiński et al. (2001). At least, the following scenarios are
intended;

• Two dynamic variables (X, Y )

– There are no relationship between the variables, X and Y

– One variable causes the other variable, X → Y

• Tree dynamic variables (X, Y, Z)

– The relationship between variables are: X → Y → Z

– The relationship between variables is X → Z; there is not relationship
with variable Y .

– There is no relationship between any of the variables, X, Y, Z

4. Semantics of topological loci

Establish the domain specific meaning of the points in the topological space. This
results from the concatenation of the above kernels (composition of functions) in
order attach specific domain (neurophysiological) meaning to locations in the man-
ifold which can express the relationships between them. A dictionary of concepts
between neuroscience and topology has to be establish, in a manner analogous to
that in Chamizo (2015) for a mechanical example. Further, initial decisions over
the meaning of the solutions in the manifold-based modelling approach will be
taken. Finally, the first research question will be answered here; a specific mani-
fold yet to be chosen depending on the properties determined in the previous tasks
encoding some domain phenomena e.g. segregational, will be built and rendered.

5. Encoding of causality by means of an imposition of a causally inspired
distance function

First, the inability of the ambient induced distance function e.g. Euclidean, to
express the construct of interest will be shown. Then a new distance function shall
be incorporated to the topological space of the Riemann manifold that allow mi-
grating from functional to effective features of brain activity to be expressed and
analyzing the deformation suffered by the manifold when the new distance is im-
posed. The objective of this task is to obtain a model of the functional connectivity
based on the Riemann manifold. Again, the final selection of the manifold might
not be Riemann’s but this preliminary choice is made on the current empirical
evidence of previous works. It remains unclear whether existing coherence based
distance functions such as direct transfer function Kaminski & Blinowska (1991)
or partial directed coherence Baccalá & Sameshima (2001), or perhaps more so-
phisticated theoretical information based functions as for instance transfer entropy
Katura et al. (2006) may actually have face validity or a new distance function will
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have to be designed. Verification of the resulting topological modelling approach
will be carried out over synthetically generated data. This task intends to answer
the second research question.

6. Encoding of causality by means of extension to negative signature spaces

Explore the extension of the previous modelling approach to negative signature
spaces. Harness a causal topological space such as Lorentz manifold that allow
effective features of brain activity to be expressed and again analyzing the defor-
mation suffered by the manifold when the new structure is imposed. The objective
is to obtain a modelling approach of the effective activity that inherently incorpo-
rates a causal structure. Verification of the resulting topological modelling will be
carried out over synthetically generated data. This task aims to answer the last
research question.

7. Validation of the models

The final step is dedicated to the confirmation of the main computational and neu-
rophysiological hypothesis presented in the introductory chapter. The ability of the
two modelling approaches for encoding effective relations across a chain of trans-
formations; (i) positive signature space plus causally inspired distance function,
and (ii) inherently causal manifold, to make predictions that match experimental
observations will be put to test. The description of the experimental design to
acquire real observations is further described below. Also, comparison of the pro-
posed models with other solutions existing in literature such as Structural Equation
Modelling as well as including the gold standard Dynamic Causal Modelling will
be made. Nomological validity will be sought.

5.2 Experimental design

A domain specific experiment will be carried out. A cohort of participants will be re-
cruited. The participants will be stimulated with a certain, either cognitive or motor
task, following the classical block design paradigm. Since the ground-truth in non-
invasive neuroimaging is unavailable, critically the task choice will be made such that
the stimulus given evokes a well-known neural circuit. Optical neuroimaging data will be
collected from the cohort. Images will be reconstructed using the modified Beer-Lambert
law. Data will be processed according to typical fNIRS processing for instrumental and
systemic noise attenuation Orihuela-Espina et al. (2010). Brain activity will be con-
firmed using alternative classical statistical task minus baseline analysis Tak & Ye (2014)
and/or statistical parametric mapping (SPM) Friston (1994) to partially confirm that
the assumed recruited circuit is active during the stimulation. Finally, the neuroimaging
dataset will be analysed for effective connectivity with both the proposed approaches
and the existing alternatives. Concurrent validity will be established by similarity of
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the recovered solution with respect to the gold standard. Nomological validity will be
discussed against literature.

Part of this experiment will be carried out during a research secondment in University
College London (approximate dates; from March 2016 to July 2016) at the Biomedical
Optical Research Laboratory under the supervision of Dr. Ilias Tachtsidis. It is intended
that the experiment design will be delineated prior to the secondment, and final details
as well as data collection to take place in while in London.
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5.4 Publications plan

The intended publications and targets are indicated below

1. Conference paper (abstract only):

• Target: 2nd International Conference on Mathematical NeuroScience (ICMNS)

• Aim: Position paper expressing the main hypothesis of this research

• Associated research question: research question 1 and main hypothesis.

• Expected results: Preliminary advances presented in chapter 5 of this proto-
col.

• Estimated submission time: Submitted. Deadline 15th January 2016

2. Conference paper (full length):

• Target: 31st Neural Information Processing Systems (NIPS) 2017. (Biennial)
Top conference in computational neuroscience, neuroinformatics and neuro-
computing.

• Aim: Modelling of segregational function and establishment of semantics of
topological loci

• Associated research question: research question 1.

• Expected results: A preliminary manifold based model of a segregational
phenomenon and the characterization of the computational properties of the
input space.

• Estimated submission time: June 2016

3. Conference paper (abstract only):

• Target: Functional near-infrared spectroscopy (fNIRS). Only world-wide con-
ference exclusively dedicated to fNIRS neuroimaging.

• Aim: Gathering of domain specific experimental data. Secondary; Familiar-
ization with experimental techniques in neuroimaging experiments.

• Associated research question: All.

• Expected results: Advances made during the research secondment on UCL.
Prelimary analysis of brain activity on the collected dataset

• Estimated submission time: June 2016

4. Journal paper:

• Target: Journal of Computational Neuroscience (IF: 1.73)
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• Aim: Establishment of the foundations of topological modelling of brain con-
nectivity

• Associated research question: research questions 2 and 3.

• Expected results: Characterization of the deformations suffered by the mani-
fold as it traverses different spaces as a result of transformations.

• Estimated submission time: March 2017

5. Journal paper .

• Target: Neuroimage (IF: 6.35)

• Aim: Proposition of two computational modelling approaches for the retrieval
of brain’s effective connectivity.

• Associated research question: research questions 2 and 3.

• Expected results: Validation of proposed models.

• Estimated submission time: End of 2017
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Chapter 6

Preliminary progress

This last chapter presents some of the preliminary ideas and advances made during the
first year.

6.1 Transformations among spaces and forward model

As suggested in the problem statement, it is possible to model the flow of information
from the neural firing and connectivity to the eventual observation of its hemodynamic
consequences in the neuroimage as a composition of functions or transformations of the
information across spaces. Although the chain of transformations described in chapters
1.3 and 4.5 make no explicit mention of an external stimulus, the brain is capable of
initiating its own activity, and therefore it is customary to add an additional transfor-
mation to consider such external stimulus. In fact, the addition of other information
such as the incorporation of systemic effects, the sensing geometry, etc could have been
equally considered. They will however, by now be excluded from this research for the
sake of simplicity though. This chain of transformations is depicted in Figure 6.1.

Figure 6.2 shows an exemplary transformation of the information from a stimulus
train to an expected hemodynamic response of a single neural population assumed to
fire with the stimulus. The choice of the kernels for this specific example is irrelevant
as the only aim is to illustrate the transformations themselves. However, for the real
modelling the selection of these kernels has an impact on the manifold construction and
deformation. The second of the research tasks indicated in the methodology is in fact the
selection of a set of appropriate kernels (transformations among spaces) for the stimulus
train, the neural firing, the hemodynamic response and the optical imaging formation
and reconstruction. Literature already offers a number of choices for the different kernels,
and current efforts are made to select the ones that will be used for this research, and
to characterize the topological properties of the kernels chosen. Although still using the
naive kernels in Figure 6.2, the modelling of a small group of 4 neural populations has
already been simulated with two of them not responding to the stimulus.

41
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Figure 6.1: The journey of the information. The chain of transformations among spaces
is depicted. The incorporation of certain stages and additional information is customary
and reflect different degree of the model fidelity to the physical process. Here the spaces
and kernels that will not be considered in this research are exemplified with grey shaded
and dashed lines respectively.

6.2 Representation of temporal signals as points in

a space

Let s(t) be a signal or time series such that s(t) = {sk|k = 1, ...K} where sk is the
amplitude value of the signal in k-th instant of time. If each moment of time e.g. sample,
is considered as a dimension in a certain space, and the amplitude of the signal at that
sample the coordinate value along that dimension, the signal s(t) becomes a point of this
space, as exemplified in Figure 6.3. The generated space has of course K dimensions.

A neuroimage can be seen as a set of signals in time; one signal being the values
recorded at each channel, and thus can be represented as
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Figure 6.2: Expected hemodynamic response. The transformation from a stimulus train
to an expected hemodynamic response of a single neural population assumed to fire
with the stimulus. The choice of kernels in this example is naive and arbitrary. In this
particular example the transformations have been achieved by convolution.

• a set of points or cloud in the K-dimensional space, where each point represents a
descriptive behaviour at a location (i.e channel).

• As a single point in a K × M-dimensional space with M being the number of
channels.

• Even perhaps by block splitting, the neuroimage can become a cloud of points in
a KB dimensional space with KB the lenght of the block.

This permits thinking of a neuroimagen as either a single point or a distribution of
points in a space. The distance function has therefore to be designed according to our
needs to either estimate similarities among specific points or among full distribution of
points, in turn permitting different types of analysis. For instance, when viewed as cloud
of points it maybe suitable to compare neuroimages with a distance function compar-
ing distributions, or perhaps a point-to-point distance function may reveal connective
patterns. Moreover, arbitrary selection of subsets of points enables analysis by regions
of interest. Or alternatively, when viewed as single points, a classic point-to-point dis-
tance function may permit elaboration of longitudinal changes in brain activity, or a
distributional distance function can expose differences among sub-cohorts or groups of
subjects. It is actually the combination of the representation and the imposed distance
function i.e. the manifold!, which dictates what is a solution to the system and how it
is represented, and consequently what is the phenomenon being exposed.

The following considerations have to be made:
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Figure 6.3: A signal S(t) as a point in a k-dimensional space

• Each point in space is a signal s(t) (or a concatenation of them e.g. a neuroimage)

• When the signal is represented as a point in a space it loses its temporal rela-
tionship. That is, the dimensions have no specific sequence or order unless it is
externally imposed.

• If the temporary structure is to be recovered, then the Euclidean distance in this
space has to be abandoned as an expression of the similarity of the signals (see
Section 6.3), or equivalently as a form of closeness between points. It is therefore
necessary to establish alternative distance functions along the manifold to express
the construct of interest.

• This representation has to be univocal. Two signals with the same values at dif-
ferent time points have to project to distinct points to ensure a 1 to 1 relation.

• A point can be expressed as a function: T → S : Rn → R or can be thought of as
multidimensional signals T → S : Rn → Rm.

• Optical neuroimaging involves multivariate data at each recording (〈HBO2,HHe〉).
Either the ambient space in unfolded to accommodate the univariate components
individually or modelling has to be made over complex C spaces.

Note how a cloud of points in space can determine a graph; simply having a given ǫ
that reflects the minimum radius at which should be another point to be considered that
it is connected. This is a particularly useful observation since the connectivity network
forms a graph.

As was mentioned, the Euclidean metric in this space does not have a clear meaning
with respect to the notion of proximity among signals. It is necessary to build a space i.e.
imposing a distance function where the location of the points reflects the same similarity.
This is equivalent to understand the point cloud as a manifold.
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6.3 Inadequacy of the Euclidean distance

Let s(k,m) a neuroimage with a sequence of dynamic signals recorded at a number of
head surface location (channels) i.e. s(k,m) = sk,m|k = 1, . . . N,m = 1, . . .M where sk,m
is the amplitude of the signal in the k-th instant of time at the m-th channel. Often the
neuroimage is the result of a recording expanding several stimulation trials or blocks.
Two common analysis in neuroimaging, both of which have been used in manifold based
neuroimaging analysis, work with either the full timecourse of the channel behaviour
e.g. Friston et al. (1996), or splitting the neuroimage in small chunks corresponding to
blocks. It is further customary to apply block averaging to increase signal to noise ratio
(at the cost of statistical power) or to resample blocks to account for self-pace differences
in trial execution. Regardless, each individual timecourse chunk that is to be passed to
further analysis can be considered as datum in a space; the so called Experiment Space.
The full dataset output by a neuroimaging experiment forms a cloud of points in this
Experiment Space.

In going from a time series representation to a point representation in the Experi-
ment Space, the temporal information is lost unless an ordering of the space dimensions
is enforced. Regardless of whether such ordering is imposed, this section intends to
illustrate that the ambient Euclidean distance among points in the space is not neces-
sarily a good metric of signal similarity which has direct implications for the construct
at hand. Indeed, signal similarity i.e. temporal correlation, is the support for functional
connectivity.

Consider the concept of signal similarity between two points as the metric i.e. the
metric encodes whether two points in the space are close or far. For example supposed
an simple case where the neurosignal are composed of only six channels (for no particular
reason) and that the neuroimagen is only scanned at two samples (for the sake of visu-
alization) i.e. six signals with two time samples each. Since we only have two samples,
and each sample translate into a single dimension in the experiment space, this space
is a two dimensional space, where component one is perhaps the first time sample and
component two is the second time sample. The mapping of the channel signals in the
Neuroimage space into the Experiment Space is represented in Figure 6.4.

Consider the following fictitious Neuroimage Space: s1(t) = 2, 2, s2(t) = 7, 7, s3(t) =
2, 3, s4(t) = 3, 4, s5(t) = 3, 4, s6(t) = 4, 6, s7(t) = 4, 6, s6(t) = 1, 0. The points s1(t) and
s2(t) will present a perfect correlation, and therefore the correlation coefficient between
these two signals will be 1. Analogously, the correlation coefficient of points s3(t), s4(t)
and s5(t) will also be 1. This is so because the correlation function is independent of
the scale. Hence, although s5(t) rises faster, the trend around its mean is the same as
in the other two signals. Finally, signal s6(t) behaves completely opposite to these three
s3(t), s4(t) and s5(t) and therefore it will have a correlation coefficient of −1 against each
of them. s1(t) and s3(t) lay close together in the Experiment space (in the Euclidean
sense), which is undesired.
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Neuroimage Space Experiment Space

Figure 6.4: An example of the transformation from the time series in the Neuroimage
Space to the point representation in the Experiment Space.

The more different your amplitude, the more distant you will be in this space. Fur-
thermore, for points with the same difference in amplitude they will be at the same
distance, with the correlation sign somehow reflecting whether you move upwards or
downwards. This simple example illustrates why the ambient Euclidean distance is not
a good choice to express connectivity related constructs, hence the importance of choos-
ing the metric and semantics of the space of connectivity to interpret the data.

6.4 Example

The rationale of the example is as follows. First, transform the timecourse observed
at every channel to an arbitrary point in a certain space. Second, impose a metric
i.e. a metric tensor (perhaps even as naive as reusing the Euclidean ambient distance)
that in its essence matches the construct of the brain phenomenon being modelled. In
this example, the brain phenomenon is functional connectivity, and thus the metric
has to encode signal similarity. Although, these two previous steps are themselves the
modelling i.e. the manifold representing the brain phenomenon is already defined by
the metric tensor, they are often accompanied by a third and final step to facilitate
model interpretation. Thus, finally, the manifold is often projected to or embedded into
a low dimensional Euclidean space for visualization. Suppose that we have acquired
a set of neuroimages and perhaps that we are interested in retrieving the functional
connectivity encoded in one of them. Since functional connectivity is about different
brain regions exhibiting associative correlational activity pattern, we are interested in
building a manifold where co-active regions manifest themselves as close loci in the
surface. For the sake of simplicity, in this example it is assumed that the information
recorded at every channel is univariate -we briefly hint later that this is not a constraint
to this modelling approach-. Also, again for simplicity, it will be assumed that each
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channel is a good proxy of one brain region of interest and that there is no overlap
among observed brain regions. The methodology is as follows:

• Projection to ambient space: Abstract each channel behavior as a point in a certain
ambient space. This is equal to transform each signal of the neuroimage (channels)
into a point in an arbitrary space that in this example we will call Experiment or
Experimental Space. If the reader is familiar with machine learning technique it
will quickly associate this with the raw feature space.

• Definition of the manifold: In the Experimental Space, order the points. Briefly,
an order is a particular indexing of the elements of a set and in topology this
equates to defining a distance function among the elements of the topology. The
distance function has therefore to be designed according to our needs permitting
either estimating similarities among specific points or among full distributions of
points in turn permitting different types of analysis. As a consequence of point
2, a manifold is defined. The manifold has been built in such way that channels
exhibiting similar temporal behavior are projected to close locations in the manifold
surface.

• Definition of the solution to the brain phenomenon (e.g. Construction of the graph
of functional connectivity) Now we need establishing the (functional) connectivity
between points as a certain characteristic of the previously built manifold. Note
how a cloud of points in space can determine a graph; simply having a given ǫ that
reflects the minimum radius at which should be another point to be considered
that it is connected (or perhaps assuming a fix number of neighbor points). This
is a particularly useful observation since the connectivity network is simply the
result of the epsilonadjacency among observed points e.g. channel timecourses in
this case.

• Renderization: Finally, a more familiar characterization of the result is provided
by rendering the connectivity network as a graph. The graph expresses the (func-
tional) connectivity of the cerebral regions encoded in the original neuroimage.

• Renderization: Finally, a more familiar characterization of the result is provided
by rendering the connectivity network as a graph. The graph expresses the (func-
tional) connectivity of the cerebral regions encoded in the original neuroimage.

6.4.1 Generation of synthetic data

The generated synthetic dataset consists of a small group of 4 neural populations with
the four responding to a given stimulus but affected by a certain amount of noise. This
noise might (or might not depending on the choice of the epsilon) prevent the observation
of the coactivity among the four regions. The expected observed haemodynamic response
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at the different channels was calculated from the convolution of the stimulus train, neural
firing and haemodynamic kernels see 6.5. Assuming an ideal imaging process (i.e. the
image space faithfully represents the hemodynamic space) and ignoring the processing;
the observed image value O(t) at a certain channel C, OC(t) when the brain is presented
with a given stimulation S(t) that excites the neuronal population interrogated by the
stimulus is given by:

OC(t) = S(t)⊗NFK(t)⊗K(t)

where NFK(t) is the neural firing kernel for an excited neuronal population andHK(t) is
the haemodynamic kernel and ı̈f

”
represents the convolution. The choice of kernels with

regards to shape, timing and amplitude of responses used in this example is intentionally
naive and arbitrary. The only purpose is exemplification. Finally, this ideal response
is contaminated with white noise (5% or less of signal range) to get variability in the
signals. OC ′(t) = OC(t) + whitenoise(t)

Figure 6.5: Expected hemodynamic response. The transformation from a stimulus train
to an expected haemodynamic response of a single neural population assumed to fire
with the stimulus. In this particular example the transformations have been achieved
by convolution.

convolution. The expected haemodynamic response of the other channels is shown
in 6.6 Again, in this example the four channels are responding to the stimulus. It would
have been trivial to exemplify a brain region that would not respond to the stimulus
(flat neural response) and or contaminate the channel behavior with stimulus locked or
stimulus unlock additional information e.g. systemic, body movement, etc. However,
with this example we only intend to show how the connectivity graph can be retrieved
and thus we have avoid generating more elaborated synthetic data.
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Figure 6.6: Expected a haemodynamic response of four channels from neuroimage.

6.4.2 Resolving the example

• Step 1) Projecting the neuroimage into an ambient space.
Following the methodology afore described, the first step is to project each signal
into a point in the Experimental space. In this example, we will use the simplest
transformation to project a signal into a point; assuming that each sample of
the signal is encoded along a different dimension, and that the value along such
dimension is the signal amplitude at that particular sample. Of course, this is
not necessarily an optimum decision. It is customary to think of s[t] as a point
s =< s1, . . . , sn > in a n dimensional space, where n is the number of samples. The
value si along the i− th dimension corresponds to the signal value or intensity at
the t− th sample; s[ti]. In other words, there is a multivalued function S : T → Rn

such that univocally makes a correspondence between sampled signals s[t] and
points in a space. Let δn be a function (of a coordinate system) representing the
n− th axis in R⋉. δn : Ts[n] → R It is possible to construct a coordinate system
∇ = Sn to project each sample to a coordinate and thus matching the signal to a
point in the space.

• Step 2) Definition of the manifold
The second step involves the imposition of a distance function which can elucidate
the (dis)similarity among points in this space according to the brain function phe-
nomenon of interest which in this case is assumed to be functional connectivity,
and thus the distance function could be expected to characterize signal similarity.
In its original proposition, Friston used 1-corr for this purpose. Mathematically,
this is a pseudometric with known consequences but not being a metric complicates
the mathematical discussion. Thus, and for no particular reason, in this example,
we will opt for maintaining the ambient Euclidean metric as the distance function
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Figure 6.7: The point corresponding to a signal s[t] in the space defined by the coordinate
system δn

encoding the phenomenon of interest. NOTE: Perhaps we are forcing things to
be much simpler than they are in this example, as the particular choice of the
Euclidean metric considering the specific encoding projection mentioned above is
known to not be a good representative of signal similarity. Hopefully, we are allowed
this license here. In this example each channel is considered a separate function
OC(t) and projects to distinct points, the whole neuroimage projects to a cloud of
points in a 4191-dimensional space which for the sake of visualization it has been
embedded here in 6.7 in a 2D space by means of Classical multidimensional scaling
(CMS).

In this example, considering that the synthetic signals have 4191 samples, the
resulting ambient space is a 4191-dimensional space.

• Step 3) Definition of the solution to the brain phenomenon.
Once the manifold is built, we still have to define what represents a solution to
our problem of brain functional connectivity. As suggested above, in this case this
can be easily afforded by having a given epsilon ǫ that expresses the minimum
radius at which two points are to be considered functionally connected. Another
well-known strategy to define the graph is basically considering a fixed number
of neighbours with its own pros and cons. Of course, the choice of the epsilon
is thresholding the adjacency matrix of the connectivity network. Let D be the
matrix of pairwise distances among points. It is irrelevant whether in this case,
and given that we have chosen a metric as a distance function the main diagonal
of D is full of 0s and moreover D is symmetric. This has not need to be the
case in pseudo-Riemannian manifolds e.g. causal manifolds. We can define our
solution as the adjacency matrix resulting of pruning D for values above epsilon;
Adjacency matrix = (D ¡ epsilon) Since in our synthetic dataset, all four channels
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Figure 6.8: Manifold with cloud of points ordered (i.e. affected by a distance function).
Point with most similar behavior (in this case less noise) are closer.

are responding actively to the stimulus, they all exhibit very similar behavior, and
their only difference in this example lay in the amount of noise introduced. It can
be appreciated in Figure 6 how the two with higher signal to noise ratio projects
closer, whereas larger noise separates the points (note the different scale of the first
and second CMS components in the figure). We can choose just to exemplify a
non fully connected network, the choice of an epsilon = 1000AU. With this choice
only channels 1 and 4 will be connected. Solutions in manifold based modelling do
not have to be confined to graphs.

• Step 4) Renderization.
Finally, the obtained graph can be represented in a more classical graph-based
visualization. In this trivial example this is achieved effortlessly and the result
is illustrated in Figure 6.9. Although in this case the graph is simple and undi-
rected and moreover it does not contains cycles, more complicated manifold based
modelling might yield also more complicated graphs.
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Figure 6.9: The solution graph. Channels C1 and C2 have high similarity according to
the modelling choices made. With the chosen epsilon, the channels C3 and C4 there
aren’t functionally connected for us.

We have presented a very naive example of how manifolds can help to model brain
function. It is convenient to emphasize that manifold based modelling of brain function
is not constraint to the modelling decisions taken here, but instead it provides a rich
framework for neuroimage analysis.

6.5 Conclusions

As progress of this first year, preliminary considerations about the modelling have been
made and naive examples of the rationale behind some decisions have been exposed.

In this research we are hypothesizing that the brain function abides the topological
construct of the manifold, and if that is the case, then many phenomena about brain
function can be expressed under a topological framework. In other words, manifolds of
different kinds are sufficiently expressive tools to hold solutions and predict observations
across a range of brain behaviour phenomena. In this work we look forward to (i) produce
some initial topological manifold-based models of different brain function phenomena,
(ii) demonstrate some mathematical properties of such brain behaviour e.g. continuity
of some specific model of brain haemodynamics, and (iii) make initial predictions of yet
unseen observations, so that we provide foundational evidence of our hypothesis. This
initial work aims to support the first two of these three targets. In particular,

• The preliminary simulation of the chain of transformations, even with naive ker-
nels, help to understand the deformation suffered by the information as it flows
through the system from the hidden variables of interest to the observable vari-
ables. Note however that optical image formation and reconstruction have not yet
been simulated.

• The characterization of time signals and/or neuroimages as points or cloud of points
in a space is an important step towards the manifold based modelling.

• The demonstration that the Euclidean distance is inadequate to capture signal
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similarity by a simple counterexample, highlights the importance of setting the
appropriate mathematical properties of the system.

The above preliminary advances allow claiming that manifold based modelling of
effective connectivity appears to be a feasible endeavour. With huge potential to express
many subanalysis e.g. by block, by treatment group, transversal o longitudinal, etc., as
limited in section 6.2 by only dealing the encoding of the neuroimaging and the metric
tensor on the manifold.
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R. B. Buxton, K. Uludağ, D. J. Dubowitz, & T. T. Liu. Modeling the hemodynamic
response to brain activation. Neuroimage, 23:S220, 2004.

L. Cayton. Algorithms for manifold learning. Technical report, 2005.

F. Chamizo. Differential geometry bases, 2015.
https://www.uam.es/personal pdi/ciencias/fchamizo/asignaturas/mgeom1516/ -
mgeom1516.html, Accessed 11-09-2015.
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