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Abstract

Information systems in Rough Set Theory (RST) are tables of objects described by a set of attributes. This

type of tables are widely used in different pattern recognition problems, particularly in supervised classifi-

cation. RST reducts are minimal subsets of attributes preserving the discernibility capacity of the whole set

of attributes. Reduct computation has an exponential complexity regarding the number of attributes in the

information system. In the literature, several algorithms for reduct computation have been reported, but their

high computational cost makes them infeasible in large problems. For this reason, in this research we will

develop new fast algorithms in two directions, the computation of all reducts and the computation of globally

shortest reducts. The proposed algorithms will be faster than state of the art algorithms, and hence the reduct

computation will be viable for larger information systems than it is today. As part of this PhD research

proposal, we present some preliminary results, which show that it is possible to develop faster algorithms for

computing reducts.
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1. Introduction

Rough set theory (RST), proposed by Z. Pawlak in 1982 (Pawlak, 1981a,b, 1982, 1991), is a relatively

new mathematical theory to deal with imperfect knowledge, in particular with vague concepts. Into RST,

information systems are tables of objects (rows) described by a set of attributes (columns). When data

is collected or recorded, every single aspect (attribute) of the object under study is considered to have a

complete representation and to ensure that no potentially useful information is lost. As a result, information

systems are usually characterized by a large number of attributes, degrading the performance of machine

learning tools (Parthaláin et al., 2008). One of the main concepts in RST is the notion of reduct, which is

a minimal subset of attributes preserving the discernibility capacity of the whole set of attributes (Pawlak,

1991). However, the main restriction in practical applications of RST is that computing all reducts of an

information system has an exponential complexity (Skowron & Rauszer, 1992). Therefore an active research

line is the development of fast algorithms for reduct computation.

Several attempts to speed up the reduct computation have been reported. Many of these algorithms are

based on some heuristics. The main drawback of this approach is that these algorithms do not necessarily re-

turn the complete set of reducts of an information system, and sometimes they may obtain super-reducts (non

minimal subsets). Another way to speed up reduct computation is parallelization (Strakowski & Rybiski,

2008). There are also interesting alternatives such as the use of a parallel version of genetic algorithms

(Wroblewski, 1998) and the transformation of the reduct computation problem to the well known SAT prob-

lem (Jensen et al., 2014).

Recently the RST reducts have been related to the typical testors (TT) from the logical combinatorial ap-

proach to pattern recognition (Lazo-Cortés et al., 2015). Testor Theory was created by Cheguis & Yablonskii

(1955) as a tool for analysis of problems connected with control and diagnosis of faults in circuits. Testor

Theory can be used for feature selection as shown in (Ruiz-Shulcloper, 2008) and (Martı́nez & Guzmán,

2001). Algorithms for typical testors computation like (Ruiz-Shulcloper et al., 1985), (Santiesteban & Pons,

2003), (Sanchez & Lazo, 2007) and (Lias-Rodrı́guez & Pons-Porrata, 2009), can be applied to reduct com-

putation due to the similarity between these two concepts. Fast implementations of these algorithms; based

on cumulative binary operations (Sánchez-Diaz et al., 2010), genetic algorithms (Sanchez-Dı́az et al., 1999)

and hardware architectures (Rojas et al., 2012); have been developed to reduce the computation time. One

strength of our research is that we will be evaluating, for the first time, these two families of algorithms in

the same arena.

Throughout our research, we will conduct a comparative study between the most relevant algorithms for

reduct computation. Although our main focus will be on algorithms for computing all reducts and globally

shortest reducts, experiences from heuristics approaches will be considered as well. We will be exploring

the relationship between algorithms’ performance and characteristics of the information system. Based on

this relationship, we will propose fast algorithms for reduct computation. Finally, the proposed algorithms

will be redesigned and implemented in a hardware fashion in order to improve, even more, their efficiency.

2. Basic Concepts

RST is based on the assumption that every object in the universe of discourse is described, through a set

of attributes, by some information associated to it. This information constitutes the basis for the classification

of unseen objects. RST motto is Let the data speak for themselves (Tiwari, 2014).
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From the RST point of view, two objects are indistinguishable (indiscernible) if they have an equiva-

lent value for each attribute in their description. Indiscernibility relations arising this way constitute the

mathematical foundations of RST. Some basic concepts of RST are presented bellow. Although we will be

following the explanation in (Polkowski et al., 2000), some modifications in the notation are introduced to

provide clarity in the rest of the document.

2.1. Information System

The basic representation of data in RST is an Information System (IS). An IS is a table with rows repre-

senting objects while columns specify attributes or features. Formally, an IS is defined as a pair IS = (U,A)
where U is a finite non-empty set of objects U = {x1, x2, ..., xn}, and A is a finite non-empty set of at-

tributes (features, variables). Every attribute in A is a map: a : U → Va. The set Va is called the value

set of A. Attributes in A are further divided into condition attributes C and decision attributes D such that

A = C ∪D and C ∩D = ∅. Table 1 shows an example of an IS.

Table 1: An Information System.

c1 c2 c3 d

x1 1 3 0 0

x2 1 0 0 0

x3 3 1 1 1

x4 3 3 2 1

x5 4 2 3 1

x6 4 3 1 0

x7 4 2 5 1

Decision attributes determine to which class an object belongs. In the IS of table 1, d is the decision

attribute; this is a two-class system. Condition attributes do not absolutely determine the class but help to

decide to which class an object belongs to. In supervised classification, condition attributes are the only

information available for classifying new objects; while, decision attributes are only available for objects in

the training set. An IS with decision and condition attributes is called a decision table. In table 1, c1, c2 and

c3 are condition attributes.

2.2. Positive Region

Decision attributes induce a partition of the universe U into equivalence classes (decision classes). Since

we will be trying to associate a decision class to an object, based on the attributes belonging to B ⊆ C , we

are interested in those B − classes (classes induced by B) which correspond to classes induced by d. This

idea leads to the notion of the positive region of the decision. The set POSB(d), called the B-positive region

of d, is defined as the set of all objects in U such that all their indistinguishable objects (under the knowledge

in B) belong to its same class induced by d.

Taking for example the IS in table 1, we can see that

POS{c1}(d) = {x1, x2, x3, x4}
POS{c2}(d) = {x2, x3, x5, x7}
POS{c1,c2}(d) = U
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2.3. Reducts and Core

Given an information system IS = (U,A) with condition attribute set C and decision attribute set D
such that A = C ∪D and C ∩D = ∅. A subset B ⊆ C is a reduct of IS relative to D if

1. POSB(D) = POSC(D).

2. B is a minimal subset (with respect to inclusion) satisfying condition 1.

We call super-reduct to any subset B ⊆ C satisfying condition 1 whether it satisfies condition 2 or not.

The intersection of all reducts of an IS is called the core.

2.4. Discernibility Matrix and Discernibility Function

The discernibility knowledge of an information system is commonly stored in a symmetric |U | × |U |
matrix called the discernibility matrix. Each element mij in the discernibility matrix MIS is defined as

mij =

{

{c ∈ C : c(xi) 6= c(xj)} for D(xi) 6= D(xj)
∅ otherwise

(1)

Here, c(xi) represents the value of the condition attribute c in the object xi, and

D(xi) 6= D(xj)⇒ ∃d ∈ D | d(xi) 6= d(xj)

where d(xi) represents the value of the decision attribute d in the object xi.

Table 2 shows the discernibility matrix for the IS in table 1 as a lower triangular matrix (∅’s are omitted

for clarity).

Table 2: Discernibility Matrix Example.

x ∈ U 1 2 3 4 5 6 7

1

2

3 {c1, c2, c3} {c1, c2, c3}
4 {c1, c3} {c1, c2, c3}
5 {c1, c2, c3} {c1, c2, c3}
6 {c1, c2} {c1, c3} {c2, c3}
7 {c1, c2, c3} {c1, c2, c3} {c2, c3}

Once the discernibility matrix MIS is found, we can define the discernibility function fIS . This is

a Boolean function of n Boolean variables c∗1, c
∗
2, ..., c

∗
n, representing the presence of the corresponding

attribute (True) or its absence (False) in MIS . Here, the disjunction (∨) and conjunction (∧) operators have

their common meaning. Their evaluation over a set of Boolean variables X = {x∗1, x
∗
2, ..., x

∗
n} should be

denoted as ∧X = x∗1 ∧ x∗2 ∧ ... ∧ x∗n.

fIS(c
∗
1, c

∗
2, ..., c

∗
n) = ∧{∨c

∗
ij : 1 ≤ j ≤ i ≤ |U |,mij 6= ∅} (2)
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where c∗ij = {c∗ : c ∈ mij}. Only the lower triangular matrix from MIS is taken into consideration

since MIS is symmetric. An equivalence between the prime implicants of fIS and all reducts of IS has been

found and reported in (Pawlak & Skowron, 2007).

The discernibility function for the discernibility matrix in table 2, after simplifying by deleting repeated

clauses, is

fIS(c
∗
1, c

∗
2, c

∗
3) = (c∗1 ∨ c∗2 ∨ c∗3) ∧ (c∗1 ∨ c∗2) ∧ (c∗1 ∨ c∗3) ∧ (c∗2 ∨ c∗3)

2.5. Binary Discernibility Matrix

The Binary Discernibility Matrix is a binary table representing the discernibility sets between pairs of ob-

jects. This is another representation of the information in MIS . In the binary discernibility matrix, columns

are single condition attributes and rows represent pairs of objects belonging to different classes. The dis-

cernibility element m(i, j, c) for two objects xi and xj and a single condition attribute c ∈ C is given in a

binary representation, such that:

m(i, j, c) =

{

1 for c(xi) 6= c(xj),D(xi) 6= D(xj)
0 otherwise

(3)

Table 3 shows the binary discernibility matrix for the information system of Table 1.

Table 3: Binary Discernibility Matrix Example.

c1 c2 c3
x1, x3 1 1 1

x1, x4 1 0 1

x1, x5 1 1 1

x1, x7 1 1 1

x2, x3 1 1 1

x2, x4 1 1 1

x2, x5 1 1 1

x2, x7 1 1 1

x3, x6 1 1 0

x4, x6 1 0 1

x5, x6 0 1 1

x6, x7 0 1 1

2.6. Simplified Discernibility Matrix

The Simplified Discernibility Matrix is a reduced version of the discernibility matrix after eliminating

supersets and repeated rows in MIS . This new discernibility matrix has the same reducts as the original one

(Yao & Zhao, 2009). An equivalent concept exists in Testor Theory, called Basic Matrix. The basic matrix

was proven to have the same TT as the original information system (Lazo-Cortés et al., 2001). Table 4 shows

the basic matrix for the discernibility matrix from Table 3.
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Table 4: Simplified Discernibility Matrix.

c1 c2 c3
1 0 1

1 1 0

0 1 1

3. Related Work

In this section, we will be first discussing heuristic algorithms for reduct computation. Some of these

algorithms are capable of finding several reducts and others are intended to obtain a single shortest reduct.

Then, two kinds of algorithms for computing all reducts will be exposed: those from RST and those from

Testor Theory. Finally, we will make a review of parallel accelerations reported in the literature.

In Figure 1, we propose a taxonomy of the reported algorithms for computing a single reduct and, in

Figure 2, a taxonomy of the reported algorithms for computing all reducts. This classification corresponds

to the sequence that we will be following throughout our review of the state of the art.

Algorithms for Computing a single Reduct

Short

Heuristic

FPGA

(Tiwari et al., 2013)

(Tiwari & Kothari, 2011)

Sequential

(Yang et al., 2008)

(Chouchoulas & Shen, 2001)

Subdivision

FSDC-HS (Jiao et al., 2010)

FSDC-RS (Jiao et al., 2010)

Stochastic

RSFSACO (Chen et al., 2010)

GenRSAR (Jensen & Shen, 2003)

AntRSAR (Jensen & Shen, 2003)

(Bjorvand & Komorowski, 1997)

(Wroblewski, 1995)

Shortest

RSAR-SAT (Jensen et al., 2014)

(Lin & Yin, 2004)

Figure 1: Taxonomy of algorithms for computing a single reduct.

3.1. Algorithms Finding a Single Reduct

The algorithm presented in (Chouchoulas & Shen, 2001) QUICKREDUCT starts with an empty set of at-

tributes and adds, one at a time, the attribute having the highest significance. This greedy algorithm evaluates

the significance of an attribute as the number of objects added to the positive region after its inclusion. A

similar approach is the Johnson Reducer (Johnson, 1973), first introduced in RST by Ø hrn (2000). This

simple greedy algorithm begins with an empty set of attributes evaluating each conditional attribute in the

discernibility function according to a heuristic measure. In the simplest case, those attributes with highest

appearance frequency within the logical clauses of the discernibility function, are considered to be more
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Algorithms for Computing all Reducts

Rough Sets

Subdivision

(Strakowski & Rybiski, 2008)

SRGonCRS (Wang, 2007)

Sequential

RSAR-SAT (Jensen et al., 2014)

RGonCRS (Wang, 2007)

(Starzyk et al., 1999)

Testor Theory

FPGA

BT (Rojas et al., 2012)

(Cumplido et al., 2006)

Sequential

YYC (Alba-Cabrera et al., 2014)

BR (Lias-Rodrı́guez & Sanchez-Diaz, 2013)

CT EXT (Sánchez-Diaz et al., 2010)

LEX (Santiesteban & Pons, 2003)

CC (Águila & Ruiz-Shulcloper, 1984)

CT (Bravo, 1983)

BT & TB (Ruiz-Shulcloper et al., 1985)

Figure 2: Taxonomy of algorithms for computing all reducts.

relevant. The algorithms in (Nguyen & Skowron, 1997) and (Wang & Wang, 2001) use alternative heuristic

functions for guiding the search; while (Yang et al., 2008) use the discernibility matrix instead of the dis-

cernibility function. The algorithm presented in (Zhong et al., 2001) starts from the core (since it must be

contained in every reduct) and follows a similar procedure adding selected attributes. This optimization may

be impractical for large datasets (Jensen et al., 2014) since the core must be computed a priori.

The method presented in (Jiao et al., 2010) improves the efficiency of computing reducts by means of

subdivisions of the dataset. The original dataset is broken down into a master-table and several sub-tables

both, simpler and more manageable. Two algorithms are proposed (FSDC-RS and FSDC-HS) using different

decomposition strategies. Results are then joined together in order to find reducts of the original dataset.

Special attention deserves the approaches using genetic algorithms to discover locally shortest reducts.

Although these algorithms do not guarantee finding globally shortest reducts, many reducts may be found

in a determined time. A good point in this approach is the use of a fitness function to guide the search

down to a set of reducts with the desired properties. The algorithm reported in (Wroblewski, 1995) encodes

candidates as bit strings with a positional representation of attributes in candidate sets. The fitness function

depends on the number of attributes in the subset, penalizing strings with a large number of attributes. The

second optimization parameter is the number of objects that can be distinguished by the given candidate. The

reduct should discern as many objects as possible. Jensen & Shen (2003) also introduced a simple algorithm

(GenRSAR), which uses a genetic search strategy in order to find reducts.

Other bio-inspired approaches to reduct computation include Ant Colony Optimization (Jensen & Shen,

2003) (AntRSAR) and (Chen et al., 2010) (RSFSACO); and Particle Swarm Optimization (Wang et al.,

2007).

In (Lin & Yin, 2004), a heuristic is followed to find a short reduct. This first reduct is used to limit

the search space, in order to only consider those attribute combinations with lower cardinality. The main

drawback of this algorithm is that the second step searches for reducts by checking all possible s-subtables

of the whole database. An s-subtable means a subtable whose conditional attribute set have size s. In other

words, it is a decision table with a conditional attribute subset of size s plus the decision attributes of the
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original table. This final process uses no pruning strategy and explores all combinatorial possibilities of

attribute combinations, which is unfeasible in most cases.

Although originally intended for computing a single minimal reduct, the algorithm proposed in

(Jensen et al., 2014) (RSAR-SAT) may be modified in order to obtain all reducts in an Information Sys-

tem. The method introduced in this work reduces the problem of finding a reduct from the discernibility

function to the SAT problem (Davis et al., 1962). The boolean function generated in this way is always

satisfied since the complete set of attributes is a trivial solution.

3.2. Algorithms for all Reducts and all Typical Testors Computation

One of the first algorithms designed to overcome the exponential complexity (regarding the number of

features) of the problem of finding all TT, was proposed by Ruiz-Shulcloper et al. (1985). This algorithm,

called BT, codifies a subset of features as a binary word with as many bits as features in the dataset. A 0

represents the absence of the corresponding feature in the current subset while a 1 represents its inclusion.

This way, candidates subsets are evaluated in the natural order induced by binary numbers. The pruning pro-

cess in the search space is based on the minimal condition of TT and a convenient sorting of the basic matrix

associated to the dataset. Finally, testors found by BT algorithm must be filtered in order to remove any

non-TT. In (Ruiz-Shulcloper, J., Alba-Cabrera, E., Lazo-Cortés, 1995) a new algorithm (REC) is presented.

The main drawback of REC is that it works directly over the dataset (instead of using the basic matrix),

handling a huge amount of superfluous information. Ayaquica (1997) presented the algorithm CER directed

to solve this problem by using a different traversing order.

Then, Santiesteban & Pons (2003) proposed a new algorithm called LEX. The main ideas behind LEX

are a new traversing order of candidates (which resembles the lexicographical order in which string characters

are compared) and the concept of gap. In LEX, the typical condition is verified first and only for those

potentially TT, the testor condition is checked. The concept of gap allows to avoid the evaluation of any

subset of a candidate, given that it is a TT (or a not testor) which includes the last feature in the dataset.

Sanchez & Lazo (2007) proposed the CT EXT algorithm for computing all TT. Following a traversing

order similar to that in LEX, this algorithm searches for testors without verifying the typical condition. This

way, a larger number of candidates are evaluated, in comparison to LEX; but the cost of each evaluation is

lower. Results from experiments show that CT EXT is faster than the previous existing algorithms for most

datasets. Then, Lias-Rodrı́guez & Pons-Porrata (2009) presented the BR algorithm, a Recursive algorithm

based on Binary operations. BR is very similar to LEX in its bones but its recursive nature encloses a great

improvement. Given a candidate subset, the remaining features are tested a priori and those being rejected

are excluded from subsequent evaluations. Sánchez-Diaz et al. (2010) presented a cumulative procedure for

the CT EXT algorithm. This fast-CT EXT implementation drastically reduces the runtime for most datasets

at no extra cost. In (Lias-Rodrı́guez & Sanchez-Diaz, 2013) the gap elimination and column reduction are

added to BR. This fast-BR algorithm is, no doubt the one evaluating the minimum number of candidates in

the state of the art. The main drawback of fast-BR and BR is, as in LEX, the high cost of evaluating the

typical condition for each candidate.

Recently, a new internal scale typical testor–finding algorithm (YYC) was proposed by Alba-Cabrera et al.

(2014). Although they claim that this algorithm verify less candidates than previous alternatives, two weak

points should be addressed. First, BR is not included in their comparisons; and second, the evaluation cost for

a candidate in YYC is high compared to that of previous algorithms. YYC verifications involve calculations

of the Hamming weight.
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A method for the computation of all reducts in an Information System is proposed in (Starzyk et al.,

1999, 2000). This is a divide and conquer approach. On each step, the absorption laws are applied over the

incoming discernibility matrix to obtain a basic matrix. Then, the strong equivalent attributes are compressed

(which is a local reduction of columns). The most discerning attribute is selected (in the same way as

Johnson’s reducer does) and the problem is divided into two sub-problems:

• Finding reducts containing the selected attribute. Thus a recursive function is called with a new basic

matrix, having only those rows where the selected attribute does not appear.

• Finding reducts that do not contain the selected attribute. Thus a recursive function is called with a

new discernibility matrix, removing the column corresponding to the selected attribute.

The base case in the recursion is reached when each attribute in the incoming discernibility matrix appears

in a single clause. In this way, a set of super-reducts is obtained and supersets must be removed in order to

obtain the final reduct set. Notice that this algorithm is oriented to the binary discernibility function, then

terms such as discernibility and basic matrix, rows and columns are not used in the paper. The algorithm is

presented in an iterative fashion and its recursive nature is not clearly expressed.

Wang (2007) proposed a new algorithm for computing all reducts RGonCRS. Even though this algorithm

was developed independently and reported two years before to the one reported in

(Lias-Rodrı́guez & Pons-Porrata, 2009), it is very similar to BR. Notice that this is a rough set approach to

the problem and the nomenclature is totally different from that of BR. Essentially, every proposition support-

ing the pruning process in (Wang, 2007) have an equivalent proposition in (Lias-Rodrı́guez & Pons-Porrata,

2009). The main differences of RGonCRS with BR are:

• It works directly over the dataset instead of the basic matrix.

• It starts searching the core and looks for reducts as supersets of the core.

• A recursive implementation, instead of the iterative solution used in BR, is proposed.

• During the algorithm execution, contributing attributes are sorted as in the Johson reducer.

• A second algorithm SRGonCRS is proposed for subdividing the dataset and the reducts are incremen-

tally found.

Different variants (DT, DISC FUNCTION and CANDIDATE REDUCTS) for decomposition of a reduct

computation problem are discussed and proposed in (Strakowski & Rybiski, 2008).

3.3. Parallel Accelerations

A parallel acceleration of the algorithm presented in (Yang et al., 2008), for reduct generation from a

binary discernibility matrix, was developed in (Tiwari & Kothari, 2011; Tiwari et al., 2012). This FPGA im-

plementation computes a single reduct. A real application for object identification into an intelligent robot is

presented. In (Tiwari et al., 2013) a quick reduct algorithm, similar to that presented in (Chouchoulas & Shen,

2001), is proposed and implemented in a hardware fashion. A recent work from these authors (Tiwari, 2014),

shows a thorough survey of FPGA applications in rough set reduct computation.
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In (Wroblewski, 1998), a parallel variant of the algorithm proposed in (Wroblewski, 1995) is presented.

Developments in parallel implementations of genetic algorithms are exploited to provide a speedup for the

problem of finding reducts.

In (Grze, 2013; Kopczynski et al., 2014), an FPGA application for a single reduct computation is pre-

sented. Although authors claim that a huge acceleration is achieved, some weak points have to be men-

tioned. Experiments presented in (Kopczynski et al., 2014) to validate their results are performed over a

small dataset which in our experience does not imply its applicability to larger cases where such acceleration

is needed. On the other hand, runtime estimations for the FPGA component executions are made by means

of an oscilloscope without taking into account communication overhead.

From the Testor Theory, several attempts to overcome the complexity problem, by means of FPGA im-

plementations of algorithms, have been done. In a first work (Cumplido et al., 2006), an FPGA-based brute

force approach for computing testors was proposed. This first approach did not take advantage of dataset

characteristics to reduce the number of candidates to be tested; thus all 2n combinations of n features have

to be tested. Then, in (Rojas & Cumplido, 2007) a hardware architecture of the BT algorithm for computing

typical testors was implemented. This algorithm uses a candidate pruning process for avoiding many un-

necessary candidate evaluations, reducing the number of verifications of the typical testor condition. These

two previous works compute a set of testors on the FPGA device whilst the typical condition was evaluated

afterwards by the software component in the hosting PC. Thus, in (Rojas et al., 2012) a hardware-software

platform for computing typical testors that implements the BT algorithm, similar to (Rojas & Cumplido,

2007), was proposed; but it also included a new module that eliminates most of the non typical testors before

transferring them to a host software application for final filtering.

3.4. Concluding Remarks

From our literature review, we found that algorithms for finding typical testors can be used for computing

reducts and vice-versa (Lazo-Cortés et al., 2015). We also noticed that the development of algorithms from

Testor Theory is biased to finding all the typical testors of an information system. Algorithms from Rough

Set Theory, on the other hand, are mainly divided into three categories:

• Algorithms for computing a pseudo-optimal reduct according to a criterion (which is, most of the time,

the cardinality of the obtained reduct).

• Algorithms for computing one shortest reduct.

• Algorithms for computing all reducts.

The most proliferative research area in Rough Set Theory is the development of algorithms for computing a

pseudo-optimal reduct.

We found two algorithms for finding all reducts (Starzyk et al., 2000; Wang, 2007) and two algorithms

for finding shortest reducts (Lin & Yin, 2004; Jensen et al., 2014) from Rough Set Theory. These algo-

rithms have several disadvantages since they do not work over the simplified discernibility matrix and

use complex data representations. Most of the ideas for pruning the search space in these algorithms can

be found in Testor Theory as well, however, we found interesting ideas, which are unexplored in Testor

Theory. Hardware accelerations of algorithms for computing reducts are focused on computing a single

pseudo-optimal reduct (Tiwari & Kothari, 2011; Tiwari et al., 2012, 2013; Grze, 2013; Kopczynski et al.,
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2014; Tiwari, 2014). Since this problem is not an exponentially complex task, we found these hardware

platforms less useful.

Algorithms for finding typical testors operate over the simplified discernibility matrix (basic matrix). No-

tice that computing the basic matrix from the original dataset has quadratic complexity regarding the number

of objects (rows) in the dataset, while computing all the typical testors has exponential complexity regarding

the number of attributes (columns). In most computationally expensive datasets, it is better to work over the

simplified discernibility matrix. Properties used by these algorithms are supported by boolean operations and

bit manipulations, which lead to faster implementations. We identified fast-CT EXT (Sánchez-Diaz et al.,

2010) and fast-BR (Lias-Rodrı́guez & Sanchez-Diaz, 2013) as the fastest algorithms reported in the litera-

ture for finding typical testors. Hardware accelerations reported into Testor Theory (Cumplido et al., 2006;

Rojas & Cumplido, 2007; Rojas et al., 2012) are focused on computing all the typical testors, and their main

disadvantage is that the size of the basic matrix to be solved is limited by the hardware resources available

in the FPGA device.

In the search for algorithms to overcome the exponential complexity of the problem of computing all

reducts or shortest reducts, the last word has not been said. In our preliminary results, we propose two new

algorithms to show that improvements can be obtained by exploring new pruning rules.

4. Research Proposal

In this section we present the justification and motivation, the research questions, the objectives and

the expected contributions of this PhD research proposal. We also include a detailed methodology and the

schedule for reaching our objectives.

4.1. Justification and Motivation

RST can be used to reduce the number of attributes in a dataset without relevant information loss. There-

fore, there has been a lot of research on finding reducts, particularly, shortest reducts (Jensen et al., 2014).

Zheng et al. (2014) highlighted the relevance of feature selection through rough set reducts and illustrated

the current research activity on this topic. Recently, Jiang & Yu (2015) said that attribute reduction is one of

the most important tasks in rough sets and, as a consequence, many strategies for finding reducts have been

investigated. In general, we find consensus in the literature about both, the relevance and the actuality of

research on rough set reducts.

Heuristic methods such as (Chouchoulas & Shen, 2001; Jensen & Shen, 2004; Zhong et al., 2001) are

fast alternatives for finding reducts but they do not guarantee to find a shortest reduct. Stochastic approaches

such as (Wroblewski, 1995; Jensen & Shen, 2003; Chen et al., 2010; Wang et al., 2007) still do not guarantee

finding a shortest reduct, as we have seen in Section 3. Techniques for finding all reducts (Starzyk et al.,

1999; Wang, 2007) can, of course, find the shortest reducts but with a high computational cost.

The motivation of this research is the development of algorithms for computing all reducts and globally

shortest reducts in information systems. Both problems have exponential complexity, which makes every

attempt of reducing execution time a challenging task. Our proposals for computing all reducts and globally

shortest reducts must be competitive with the state of the art algorithms in the general case and faster in

some determined cases. The main arena for comparison will be a large set of synthetic, randomly generated
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datasets and benchmarking datasets from (Bache & Lichman, 2013). Practical applications of reducts in

supervised classification or feature selection, are beyond our goals.

The products of this research will impact feature selection methods specially in large datasets. Nowadays,

data is automatically collected, thus the generation of huge databases appears in almost every field. The

current growth of the size of data, and the number of existing databases, is another justification for our

research on fast algorithms for dimensionality reduction without losing discriminative power.

4.2. Research Questions

Throughout our state of the art review, we noticed that there is not a fastest algorithm for finding reducts

on any dataset. Algorithms reported in the literature use different strategies for traversing and pruning the

whole search space. Consequently, some strategies are better suited for some datasets while they are time

consuming for some others. This leads us to our first research question:

Is there a relationship between some properties of the basic matrix and the runtime of traversing

strategies for finding reducts in information systems?

We will be considering those properties that can be extracted from the basic matrix by traversing their

cells just once. Lets take for instance, the minimum and maximum number of attributes in a cell, the core or

the mean number of attributes per cell. Other properties that require more complex operations to be extracted

such as the number of reducts, the cardinality of the shortest and largest reducts, etc; will not be considered.

From this research question we formulate the following hypothesis:

There is a relationship between the properties of the basic matrix and the runtime of traversing

strategies for finding reducts in information systems

The more sophisticated a traversing strategy is, the less number of candidate attributes sets are evaluated

to verify whether they are reducts or not. Unfortunately, a more sophisticated traversing strategy has usually

a higher computational cost. This trade-off between the number of evaluated candidates and their evaluation

cost, leads us to our second research question:

Can the runtime for computing reducts in information systems be reduced by dynamically chang-

ing the traversing strategy?

By dynamically changing we mean the change of the traversing strategy during the reduct computation.

From this research question we formulate the following hypothesis:

The runtime for computing reducts in information systems can be reduced by dynamically chang-

ing the traversing strategy

Based on these two scientific questions we can formulate the main hypothesis for our research:
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Using some properties of the basic matrix, and dynamically changing the traversing strategy,

we can design new algorithms for computing reducts in information systems; which are faster

than the state of the art alternatives in a certain kind of datasets

4.3. Research Objectives

The main objective in our research is the development of new algorithms for computing reducts in infor-

mation systems; which will be comparable to state of the art algorithms in most datasets, and faster in some

specific kinds of datasets.

These algorithms will use some properties of the basic matrix to conveniently select the traversing strat-

egy for the search space. We will explore two variants of this problem, the problem of computing all reducts

and the problem of computing globally shortest reducts. The problem of finding shortest reducts has also

exponential complexity (Lin & Yin, 2004) but different pruning rules could be used.

Our specific objectives are:

1. Finding a relationship between some properties of the basic matrix and the fastest traversing strategy

for computing all reducts.

2. Developing a new algorithm for computing all reducts.

3. Finding a relationship between some properties of the basic matrix and the fastest traversing strategy

for computing globally shortest reducts.

4. Developing a new algorithm for computing globally shortest reducts.

4.4. Expected Contributions

• A new algorithm for computing all reducts, which will be comparable to state of the art algorithms in

most datasets, and faster in some specific kinds of datasets.

• A new algorithm for computing shortest reducts, which will be comparable to state of the art algorithms

in most datasets, and faster in some specific kind of datasets.

• A meta-characterization of algorithms’ efficiency in relation to some properties of the basic matrix

associated to a dataset.

• Software and hardware implementations for computing both, all reducts and shortest reducts.

4.5. Methodology

1. Critical study of the most recent and fastest algorithms for computing reducts.

2. Finding a relationship between some properties of the basic matrix and the fastest traversing strategy

for computing all reducts.

• Generating a set of random datasets, systematically covering the space of possible combinations

of properties of basic matrices (factorial design). These properties are, for instance, the density

of ones in the basic matrix, the minimum and maximum number of ones in a row, the standard

deviation of the density of ones in rows and columns, etc.

• Implementing the main traversing strategies reported in the literature for the computation of all

reducts.
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• Generating an information system with the properties of each basic matrix, using the fastest

strategy as decision attribute.

• Extracting a relevant subset of properties for determining a priori the appropriate traversing strat-

egy for a given dataset; and the rules governing this relation. We will use Rough Set Theory for

this purpose.

• Proposing a new algorithm for computing all reducts using the rules found in the previous step.

• Evaluating the proposed algorithm over synthetic and benchmarking datasets (Bache & Lichman,

2013).

3. Finding a relationship between the traversed space and the expected cost of traversing strategies.

• Implementing the main traversing strategies reported in the literature for the computation of all

reducts in such a way that we can collect statistics for every execution stage.

• Making a statistical description of strategies’ runtime cost over synthetic and benchmarking

datasets.

• Finding a correlation between the traversed space and the expected cost of traversing strategies.

4. Developing a new algorithm for computing all reducts in information systems.

• Proposing a new algorithm for computing all reducts based on the relations found in steps 2

and 3.

• Evaluating the proposed algorithm over synthetic and benchmarking datasets.

5. Finding a relationship between some properties of the basic matrix and the fastest traversing strategy

for computing globally shortest reducts.

• Implementing the main traversing strategies reported in the literature for the computation of

minimal length reducts.

• Generating an information system with the properties of each basic matrix, using the fastest

strategy as decision attribute.

• Extracting the relevant subset of properties for determining a priori the appropriate traversing

strategy for a given dataset; and the rules governing this relation.

• Proposing a new algorithm for computing shrotest reducts using the rules found in the previous

step.

• Evaluating the proposed algorithm over synthetic and benchmarking datasets.

6. Finding a relationship between the traversed space and the expected cost of traversing strategies.

• Implementing the main traversing strategies reported for the computation of globally shortest

reducts in such a way that we can collect statistics for every execution stage.

• Making a statistical description of strategies’ runtime cost over synthetic and benchmarking.

• Finding a correlation between the traversed space and the expected cost of traversing strategies.

7. Developing a new algorithm for computing shortest reducts in information systems.

• Proposing a new algorithm for computing shortest reducts based on the relations found in steps 5

and 6.

• Evaluating the proposed algorithm over synthetic and benchmarking datasets.

8. Finally, the proposed algorithms will be redesigned and implemented in a hardware fashion in order

to evaluate the speed up that can be obtained.
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4.6. Schedule

Table 5 shows the schedule of the main tasks that will be carried out throughout this research.

Table 5: Research schedule (quarterly1).

Task

Quarters

2014 2015 2016 2017 2018

1 2 3 4 5 6 7 8 9 10 11 12

Literature review

Writing the research proposal

Critical study of algorithms for computing all

reducts in information systems

Implementation of algorithms for computing

all reducts in information systems

Development of a new algorithm for comput-

ing all reducts in information systems

Critical study of algorithms for computing

shortest reducts in information systems

Implementation of algorithms for computing

shortest reducts in information systems

Development of a new algorithm for comput-

ing shortest reducts in information systems

Critical study of hardware accelerations of al-

gorithms for computing reducts in informa-

tion systems

Designing and implementing in hardware the

proposed algorithms

Experimental set-up

Experiments run

Writing papers

Writing the PhD dissertation

Submit final draft of the PhD dissertation to

supervisors

Submit final version of the PhD dissertation

to the PhD committee

5. Preliminary Results

In this section, we expose the preliminary results of this PhD research. Our first studies were directed

to algorithms for computing typical testors. Throughout our literature review, we found that there are two

kinds of algorithms for computing typical testors: internal scale algorithms, such as CT (Bravo, 1983), CC

1Quarters are: [January-April], [May-August] and [September-December]. Schedule starts in September 2014, according to the

admission of the student in the PhD program.
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(Águila & Ruiz-Shulcloper, 1984) and YYC (Alba-Cabrera et al., 2014); and external scale algorithms, such

as BT and TB (Ruiz-Shulcloper et al., 1985), LEX (Santiesteban & Pons, 2003), CT EXT (Sanchez & Lazo,

2007) and BR (Lias-Rodrı́guez & Pons-Porrata, 2009). The former analyze the matrix to find out some

conditions that guarantee that a subset of attributes is a typical testor. The latter search typical testors over the

whole power set of attributes, avoiding unnecessary evaluations by pruning some attribute subsets. Internal

scale algorithms usually evaluate less candidates than external scale algorithms but each candidate evaluation

has a higher computational cost. Therefore, the search of fast algorithms for computing typical testors has

been biased to external scale algorithms (Alba-Cabrera et al., 2014).

Rojas & Cumplido (2007) presented a hardware implementation of the external scale algorithm BT, and

a comparative study including a brute force hardware approach and software implementations of BT and CT

(Bravo, 1983) algorithms. This hardware implementation of BT was faster than other existing algorithms

for finding all typical testors (although the hardware architecture was only capable of finding testors; which

should be filtered afterwards by a software component in a hosting PC, to remove the non typical testors). In

(Rojas et al., 2012) a new component was introduced to this platform in order to filter most of the non typical

testors in the FPGA device before transferring them to the hosting PC. We identified the final filtering stage,

in the hosting PC, as the main drawback of both platforms (Rojas & Cumplido, 2007; Rojas et al., 2012).

Thus, in the subsection 5.1 we present a new architecture for computing typical testors, which is capable of

finding all the typical testors without needing a final filtering stage. The runtime performance of our proposal

is shown using some benchmarking datasets (Bache & Lichman, 2013), as we propose in our methodology.

This result has been reported in (Rodrı́guez et al., 2014).

As a next step in our preliminary work, we included in our study the CT EXT algorithm (Sanchez & Lazo,

2007), which uses one of the fastest strategies for traversing the search space. CT EXT evaluates less candi-

dates than BT (used in our previous preliminary result) in most cases, without including more complicated

operations. As a result, CT EXT is faster than BT in most datasets. Following the idea of Rojas & Cumplido

(2007), we introduce a hardware platform inspired in CT EXT. Then, in the subsection 5.2 we describe

the new platform for computing typical testors, based on the CT EXT algorithm. This new hardware im-

plementation outperforms existing implementations of algorithms for computing typical testors. A runtime

comparison, including algorithms reported in (Rodrı́guez et al., 2014; Sanchez & Lazo, 2007), is carried out

over several synthetically generated basic matrices, as suggested in the second step of our methodology. This

result was accepted in the journal of Expert Systems with Applications2 .

As part of the preliminary results of this PhD proposal, we propose and evaluate two new algorithms for

finding all the reducts from an information system. Throughout the critical study proposed in the first step of

our methodology, we identified some properties of reduct computation that we used to develop the algorithms

presented in subsections 5.3 and 5.4. These results, partially cover the second point of our methodology, and

some elements of these algorithms will be used for the algorithm to be proposed in the fourth point.

Additionally, in subsections 5.3 and 5.4, we also implemented several traversing strategies and evalu-

ated them over synthetically generated matrices. These experiments aim to look for rules that would allow

selecting the fastest strategy, based on properties of the simplified discernibility matrix.

2http://www.sciencedirect.com/science/article/pii/S0957417415004972
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5.1. A Hardware Architecture for Filtering Typical Testors

The first step of our methodology includes the critical study of the most recent and fastest algorithms for

computing reducts. In this direction, we started studying the hardware implementations of algorithms for

computing typical testors. Rojas et al. (2012) presented a hardware-software platform for computing typical

testors, based on the BT algorithm, that included a module for eliminating most of the non typical testors

before transferring them to a host software application for final filtering. The main disadvantages of this

approach are the huge amount of data that must be transferred to the PC and the extra cost of the final filtering

stage in the software component. For this reason, we developed a new hardware module for eliminating all

non typical testors on the hardware component; reducing the amount of data that must be transferred to the

PC and eliminating the final filtering stage. This new module can be used together with any algorithm for

computing typical testors implemented on an FPGA device, as we will show in the subsection 5.2.

In the hardware platform (Rojas et al., 2012), a feature subset is handled as an n-tuple, using a positional

representation for the n attributes of a basic matrix (BM ). Given a subset T , its n-tuple representation has

a 1 in the corresponding position j for each cj ∈ T and 0 anywhere else. The information of BM is hold

in the BM hardware module. This module handles the process of deciding whether an n-tuple is a testor of

BM , by comparing the candidate against each one of the BM ’s rows.

In our proposed architecture, an N to N Decoder is introduced into each row of the basic matrix. This

new component receives as input the result of the AND operation between the current candidate and the

corresponding BM row. The output from the N to N Decoder repeats the input when there is only one bit

set to 1, and returns the null n-tuple (0, ..., 0) otherwise. For those rows with only one bit having a 1 after

ANDed with the candidate, the attribute in the position of that bit is indispensable if the candidate is a testor.

Two operations are added to the BM module in order to verify the typical condition of testors. First, a

bitwise OR operation is performed among the output of the N to N Decoder of every row. The result of this

operation has a 1 in those positions corresponding to each indispensable attribute in the current candidate.

This value is then compared to the current candidate, and if this comparison holds equality and the current

candidate is a testor, then the current candidate is a typical testor.

Lets us take for example the basic matrix shown in Table 4. We are going to illustrate the operation of

the proposed architecture using two typical testor candidates for this basic matrix. First, we will evaluate the

candidate {c1, c2} which is a typical testor. Secondly, the candidate {c1, c2, c3} will be evaluated. This last

attribute set is a superset of {c1, c2} and thus, it is not a typical testor.

Table 6: An example of typical testor

Cand. {c1, c2} Decoder output

c1 c2 c3 c1 c2 c3
1 0 0 1 0 0

1 1 0 0 0 0

0 1 0 0 1 0

Candidate = 1 1 0

Table 7: An example of a non typical testor

Cand. {c1, c2, c3} Decoder output

c1 c2 c3 c1 c2 c3
1 0 1 0 0 0

1 1 0 0 0 0

0 1 1 0 0 0

Candidate 6= 0 0 0

Left rows of Table 6 and Table 7 show the result of the AND operation between each row of BM and the

corresponding candidate. Rows in the right side show the decoder output taking as input its corresponding

left row. In the last row, the result of an OR operation over all above n-tuples is shown. According to our

previous explanation, the candidate {c1, c2} is a typical testor given that the result of the OR operation is

equal to the candidate itself; while the candidate {c1, c2, c3} is not.
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5.1.1. Evaluation and Discussion

This proposed architecture sends only typical testors from the FPGA device to the host PC. This mod-

ification eliminates the final filtering stage in the software component of the hardware-software platform

(Rojas et al., 2012). On the other hand, the final filtering stage in the software component needed in the orig-

inal platform (Rojas et al., 2012) checks every testor received from the FPGA. Testors which are a superset

of any other testor are eliminated because they do not satisfy the typical condition. We can establish a lower

boundary of the computational complexity for this process as N(N−1)/2, where N is the number of typical

testors in the basic matrix. This is the complexity of verifying that the received testors are typical given that

they all are typical testors (best case of the final filtering process).

Table 8 shows the runtime, including testor computation and final filtering, for some basic matrices

obtained from real data. For this purpose eight standard datasets from the UCI Repository of Machine

Learning (Bache & Lichman, 2013) were used. Columns in Table 8 show the dataset name, the number of

candidates tested by the BT algorithm, the number of typical testors found, the runtime for the BT algorithm

execution on the FPGA device and the final filtering stage on the host PC, which only is needed by the

original architecture. For these runtime calculations, a core i5 processor at 3.6GHz was used for the software

component and 50MHz for the FPGA architecture.

Table 8: Algorithm execution and typical testors filtering stage runtime for benchmarking datasets

Dataset Tested Candidates Typical Testors FPGA runtime (µs) PC runtime (µs)

liverdisorder 16 9 0.32 0.04

zoo 20 7 0.40 0.02

krvskp 36 4 0.72 0.01

shuttle 38 19 0.76 0.17

tic-tac-toe 44 9 0.88 0.04

australian 330 44 6.60 0.95

lymphography 802 75 16.04 2.77

german 16921 846 338.42 357.44

For most datasets shown in Table 8 the FPGA and PC runtime are of the same order of magnitude.

For those basic matrices with a large number of typical testors, the final filtering stage could be even more

expensive than the BT algorithm, as is the case for the german dataset. The total runtime for the original

architecture is the sum of the FPGA and PC runtimes. Our proposed platform only requires the FPGA

runtime, since the proposed modifications do not increase the runtime. Although finding all typical testors

for these datasets does not constitute a complex computational problem, they serve to show the benefit of

our proposal.

A drawback of our proposed modification is its dependence on the basic matrix dimensions which could

lead to a larger hardware architecture (a greater percentage of the FPGA device) when the number of rows

is much bigger than the number of columns in the basic matrix.

5.2. A Hardware Architecture based the CT EXT Algorithm

Following with the critical study of our research proposal, we studied the hardware implementation of

the CT EXT algorithm which is one of the most recent and fastest algorithms reported in the literature, after

studying the work in (Rojas et al., 2012) we designed and implemented a new hardware architecture that

traverses the search space in a different order than that presented in (Rojas & Cumplido, 2007; Rojas et al.,

20



2012; Rodrı́guez et al., 2014). This strategy evaluates less candidate subsets than previous architectures,

which results in shorter runtime. Moreover, unlike software versions of CT EXT (Sanchez & Lazo, 2007;

Sánchez-Diaz et al., 2010), our proposal evaluates a candidate every clock cycle, which leads to a faster

execution. The runtime gain of our new hardware software platform is shown throughout experiments over

synthetic datasets.

5.2.1. CT EXT algorithm

CT EXT is one of the fastest algorithms for computing all typical testors reported in the literature

(Sanchez & Lazo, 2007; Sánchez-Diaz et al., 2010; Piza-Davila et al., 2014). In order to describe this al-

gorithm we introduce some definitions and notations.

Let T be a subset of attributes, T is a testor of a basic matrix BM if the attributes in T do not form a zero

row in BM . It means that every row in BM has at least a 1 in those columns corresponding to attributes

belonging to T . We say that a testor T is a typical testor if all its proper subsets are not testors.

We can interpret a typical testor as a subset of attributes being jointly sufficient and individually necessary

to differentiate every pair of objects belonging to different classes.

During the search, CT EXT follows the idea that an attribute contributes to a subset T (candidate to be

a typical testor) if after adding this attribute to T, the attributes in T form less zero rows in BM than the

amount of zero rows before adding the attribute. This idea is used for pruning the search space.

The following proposition, introduced and proved in (Sanchez & Lazo, 2007), constitutes the basis for

the CT EXT algorithm.

Proposition 1. Given T ⊆ R and cj ∈ R such that cj /∈ T . If cj does not contribute to T , then T ∪ {cj}
cannot be a subset of any typical testor.

Algorithm 1 shows the pseudocode of CT EXT, a detailed explanation of this algorithm can be seen in

(Sanchez & Lazo, 2007). The function SortBM(BM) sorts the basic matrix as follows. First, it randomly

selects one of the rows of BM with the fewest number of 1’s. Then, the selected row is moved to the first

position and all columns in which it has a 1 are moved to the left.

The function Evaluate(BM,T ) returns three values: testor, typical and zero rows. testor is TRUE if

the set T is a testor of BM and FALSE otherwise. typical is TRUE if the set T is a typical testor and FALSE

otherwise. zero rows is the amount of zero rows of T . The function LastOne(T ) returns the position of the

rightmost 1 of the binary codification of the set T . Notice that for this hardware implementation, an attribute

candidate is coded into an n-tuple as we described in the subsection 5.1.

In the proposed hardware platform, we replaced the candidate generator module previously proposed in

(Rodrı́guez et al., 2014), which follows the BT traversing order, by a completely new module following the

lexicographical traversing order of CT EXT. Some design changes were also introduced in the rest of the

platform in order to integrate this new module. Moreover, the module for eliminating all non typical testors

on the hardware component, proposed in the subsection 5.1, was also included.
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Algorithm 1 CT EXT algorithm

1: Input: BM - basic matrix with m rows and n columns.

2: Output: TT - set of typical testors.

3: TT ← {}
4: j ← 0 ⊲ first attribute from BM to be analyzed

5: BM ← SortBM(BM)
6: while BM [0, j] 6= 0 do

7: T ← {cj} ⊲ current attribute subset

8: testor, typical, zero rows ← Evaluate(BM,T )
9: if testor = TRUE then

10: if typical = TRUE then ⊲ T is a typical testor

11: TT ← TT ∪ T
12: else

13: i← j + 1
14: while i < n do

15: T ← T ∪ {ci}
16: zero rows last← zero rows
17: testor, typical, zero rows ← Evaluate(BM,T )
18: if zero rows = zero rows last then

19: T ← T \ {ci} ⊲ attribute ci does not contribute

20: else

21: if testor = TRUE then ⊲ attribute ci contributes

22: if typical = TRUE then

23: TT ← TT ∪ T
24: T ← T \ {ci}
25: zero rows ← zero rows last
26: if i = n− 1 then

27: k ← LastOne(T )

28: if k = i then

29: T ← T \ {ck}
30: k ← LastOne(T )

31: if k 6= j then

32: T ← T \ {ck}
33: testor, typical, zero rows ← Evaluate(BM,T )
34: i← k + 1
35: else

36: i← i+ 1

37: else

38: i← i+ 1

39: j ← j + 1
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5.2.2. Evaluation and Discussion

In order to show the performance of the proposed platform, it was compared against a software imple-

mentation of the CT EXT algorithm (Sanchez & Lazo, 2007) and the BT hardware platform presented in

the subsection 5.1 and reported in (Rodrı́guez et al., 2014); which is the most recent and fastest hardware

implementation for computing typical testors reported in the literature.

Either CT EXT or BT hardware implementations are capable of evaluating a candidate per clock cycle.

If both architectures are running at the same frequency, as it will be the case in our experiments, there are

two reasons for runtime differences. The first one is the time taken for reorganizing the basic matrix, which

is a more expensive process in BT, although it can be neglected as shown in (Rojas et al., 2012). The second

and the most relevant, is the amount of candidates to be evaluated.

Regarding the software implementation, the CT EXT hardware platform has two disadvantages. First,

VHDL code is generated for each BM data, and a synthesis process must be executed previously to executing

the algorithm; while this is unnecessary in the software version of CT EXT. Secondly, the software will be

running in a PC at a frequency of 3.10GHz while our FPGA architecture will run at 50MHz.

These disadvantages make our hardware approach useful (faster) under two conditions. First, the number

of candidates to be evaluated is big enough to overcome the synthesis overhead. Second, the dimensions of

the BM are big enough to provide a considerable speed up of the candidate evaluation process. Although

the hardware architecture could be designed for a fixed maximum matrix size and receive the BM through

the USB port, by doing this, the size of the problem that can be solved would be significantly reduced. The

synthesis process comprehend an optimization of the design, taking advantage of the BM data distribution

for reducing the generated hardware configuration. The number of operations for the evaluation of a single

candidate, in the software approach, is proportional to the number of rows and it is directly related to the

number of columns in the BM . Using this approach, it is possible to achieve a significant runtime reduction,

even operating at a much lower clock frequency, by evaluating a candidate on each clock cycle.

With these points in mind, and in order to show the advantages of the proposed platform, three kinds of

basic matrices were randomly generated. Each type containing a different percentage of 1’s:

1. Very-low density matrices: approximately 8%.

2. Low density matrices: approximately 33%.

3. Medium density matrices: approximately 45%.

Higher density matrices were discarded because they do not constitute a computationally expensive

problem, as stated by Rojas et al. (2012). Here after, we will be referring to these three sets of matrices by

its approximate density of 1’s.

For our experiments, 30 basic matrices of different sizes were randomly generated. A random number

generator was used to generate rows, which are filtered for the minimum and maximum number of 1’s

allowed. In this way the desired density was controlled. If accepted, a row is verified as basic against the

saved rows. Basic rows are saved until the desired number of rows is reached.

For the hardware platforms, we measure the runtimes including the time for the following stages: BM
input parsing and VHDL code generation, synthesis process, and typical testor computation (with the hard-

ware component running at 50MHz). The number of rows for each type of matrices (very-low: 400, low: 225,

medium: 255) is conditioned by the dimensions of the biggest matrix that can be synthesized at the desired
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running frequency. All experiments were performed using an Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz

for software and an Atlys board, powered by a Spartan-6 LX45 FPGA device, for the hardware. Figures 3,

4, and 5 show graphics of the runtime (in hours) for the three types of basic matrices.

The results of the proposed CT EXT hardware platform (CTH) were taken as reference for axis limits

in Figures 3, 4, and 5. Slowest executions of the CT EXT software implementation (CTS) are not shown in

order to keep clarity in the figures. The hardware platform for BT (BTH) was not able to meet the constrain

of 50MHz clock frequency for some matrices.

Experiment results show that the proposed platform beats the software implementation of the CT EXT

algorithm, with ratios of around one order of magnitude. However, for large enough datasets this improve-

ment could be significantly higher, as it can be inferred from Figure 5.
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5.3. A New Recursive Algorithm for Reduct Computation

In this subsection we propose a new Recursive algorithm using the Simplified Discernibility Matrix

(RSDM) for computing all the reducts in a dataset. This new algorithm is based on the concept of contri-

bution like CT EXT; but non contributing attributes are discarded a priori, avoiding even more unnecessary

evaluations. Compared to CT EXT, the number of evaluated candidates in RSDM is smaller; but each eval-

uation has a higher cost.

5.3.1. Concepts for RSDM

In this subsection, we will be working with the binary representation of the simplified discernibility ma-

trix (SDM ). The following definition of super-reduct is equivalent to the condition 1 stated in Subsection 2.3

(Lazo-Cortés et al., 2015).

Definition 1. Let T ⊆ R be a subset of attributes from a dataset. T is a super-reduct iff in the sub-matrix

of SDM formed by the columns corresponding to attributes in T, there is not any zero row (row having only

zeros).

The following definition constitutes the key concept in CT EXT and RSDM, and it is also an important

component of the algorithms BR and RGonCRS.

Definition 2. Let T ⊆ R and ci ∈ R such that ci /∈ T . We say that ci contributes to T iff the number of zero

rows, in the sub-matrix of SDM formed by the columns corresponding to attributes in T ∪{ci}, is lower than

in T.

For a fast implementation of the RSDM algorithm, columns in SDM are coded as binary words with

as many bits as rows in the SDM . The cumulative mask for an attribute ci, denoted as cmci , is defined

as the binary word representing the ith column in SDM . The cumulative mask for a subset of attributes

T = {ci1, ci2, ..., cik} is defined as cmT = cmci1 ∨ cmci2 ∨ ... ∨ cmcik where ∨ represents the binary OR

operator. It is not hard to see that the number of 0’s in cmT is the same as the number of zero rows in the

sub-matrix of SDM formed by the columns corresponding to attributes in T . According to the definition 2,

ci contributes to T iff cmT∪ci has more 1’s than cmT . The incremental nature of RSDM is given by the

associative property of the OR operation, such that cmT∪ci = cmT ∨ cmci . Notice that, from this last

formulation, ci contributes to T iff cmT∪ci 6= cmT since cmT∪ci cannot have less 1’s than cmT . It is easy

to see, from the definition 1 that T ⊆ R is a super-reduct iff cmT = (1, ..., 1) (has a 1 in every bit).

The RSDM algorithm is supported by the proposition 2.

Proposition 2. Given T ⊆ Z ⊆ R and ci ∈ R such that ci /∈ Z . If ci does not contribute to T or form a

super-reduct with T, then Z ∪ {ci} cannot be a subset of any reduct.

Proof 1. From the proposition 1, if cj does not contribute to T , then T ∪ {cj} cannot be a subset of any

reduct. Since {T ∪ {ci}} ⊆ {Z ∪ {ci}}, if Z ∪ {cj} is a subset of a reduct, then T ∪ {cj} must be a

subset of a reduct; which contradicts the proposition 1. If T ∪ {ci} is a super-reduct, Z ∪ {ci} cannot be a
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reduct, since it is a superset of a super-reduct; which contradicts the condition 2 of the definition of reduct

(Subsection 2.3)3 .

5.3.2. The RSDM Algorithm

The first step in the RSDM algorithm consist in sorting the SDM in order to reduce the search space.

The sorting process is the same that we presented in the subsection 5.2 for CT EXT. A SDM , sorted in this

way, can be seen in Table 9. The pseudocode for RSDM is shown in Algorithm 2.

Table 9: Sorted Simplified Discernibility Matrix

c0 c1 c2 c3 c4
1 1 0 0 0

0 1 0 0 1

1 0 0 1 0

0 0 1 0 1

The algorithm execution starts with the first element (column) in the sorted SDM and repeats until an

attribute with a 0 in the first row is reached (line 2). Notice that for the rest of the candidates, the first row will

always be an empty row. If this single attribute is a super-reduct (line 3) then it is saved in the super-reduct

set SR; else, the recursive evaluator (line 8) is called with the current attribute as the base set B and the

remaining attributes to its right as the tail set C (line 6). In the recursive procedure, every attribute in the

tail is tested whether contributes or not to the base set (line 10). The attributes are removed from the tail set

for furthers evaluations, if they form a super-reduct (line 13) or they do not contribute to B (line 16). This a

priori evaluation and rejection of attributes constitutes the key of our proposed algorithm, and it is supported

by proposition 2. Finally, the remaining attributes in the tail set are concatenated with B, one at a time, and

used as base set for subsequent recursive evaluations with the remaining attributes in C as tail (line 19).

Lets take for example the simplified discernibility matrix from Table 9. The candidates evaluated by

CT EXT and RSDM are shown in Table 10. Notice that while CT EXT evaluates 17 candidates, in RSDM,

only 13 candidates are evaluated.

Table 10: Candidates evaluated by CT EXT and RSDM for the matrix of Table 9

CT EXT RSDM

{c0} {c0, c1, c4} {c0, c3} {c1, c2, c3} {c1, c4} {c0} {c0, c4} {c1, c3} {c1, c3, c4}
{c0, c1} {c0, c2} {c0, c4} {c1, c2, c4} {c0, c1} {c0, c1, c2} {c1, c4}
{c0, c1, c2} {c0, c2, c3} {c1} {c1, c3} {c0, c2} {c1} {c1, c2, c3}
{c0, c1, c3} {c0, c2, c4} {c1, c2} {c1, c3, c4} {c0, c3} {c1, c2} {c1, c2, c4}

5.3.3. Evaluation and Discussion

In order to evaluate the performance of RSDM, we present a comparative execution over synthetically

generated simplified discernibility matrices. For this experiment, we selected CT EXT as reference algo-

rithm because it is one of the fastest algorithms reported in the literature. Comparing RSDM with CT EXT

3Herein after denoted as irreducible condition

26



Algorithm 2 Recursively calculate super-reducts in SDM

Input: Sorted SDM
Output: SR - set of super-reducts containing all reducts

1: i⇐ 0, SR⇐ ∅
2: while SDM(0, i) 6= 0 do

3: if cmci = (1, ..., 1) then

4: SR⇐ SR ∪ {ci}
5: else

6: eval({ci}, cmci , {ci+1, ..., cm})

7: i⇐ i+ 1

8: eval(B,cmB ,C)

9: for all c ∈ C do

10: cmB∪{c} = cmB ∨ cmc

11: if cmB∪{c} 6= cmB then

12: if cmB∪{c} = (1, ..., 1) then

13: C ⇐ C \ c
14: SR⇐ SR ∪ {B ∪ {c}}

15: else

16: C ⇐ C \ c

17: for all c ∈ C do

18: C ⇐ C \ c
19: eval(B ∪ {c},cmB∪{c},C)

makes possible to evaluate the effect of the difference in the traversing order between these two algorithms;

and its relation to some SDM properties (the number of rows and the density of 1’s).

For our experiments we used 380 SDMs divided into five groups regarding their number of rows (200,

1100, 2000, 2900 and 3800 rows). Each matrix has 30 attributes and was randomly generated using the

procedure exposed in the subsection 5.2. Our controlled variables are the number of rows in the SDM and

the density of 1’s. Matrices were divided into three levels of density:

1. Very-low density: approximately 20% (75 matrices).

2. Low density: approximately 30% (125 matrices).

3. Medium density: approximately 47% (180 matrices).

For this experiment, CT EXT and RSDM were applied over every SDM . Each combination was ex-

ecuted three times and the runtime was estimated using the fastest execution. This process ensures a 95%

confidence interval according to Haveraaen et al. (2001). The execution order was randomized to control

the runtime bias due to the operating system load. All experiments were run on a G1620 Intel processor at

2.7GHz with 2GB in RAM over a GNU/Linux operating system.

Figures 6, 7 and 8 show the runtime of CT EXT and RSDM for SDMs with very-low, low and medium

densities respectively. Each point, in these figures, represents the average runtime for all the matrices having

the same number of rows. Figure 9 shows the average runtime of CT EXT and RSDM for all the SDMs,

without taking their density into account.

From Figures 6-8 we notice a positive correlation between the performance improvement of RSDM over
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Figure 7: Runtime for matrices with densities around 30%.

CT EXT, and the density of 1’s in the SDM . Indeed, there is no apparent difference between RSDM and

CT EXT runtime for very-low density matrices. In RSDM, every remaining attribute (according to the lex-

icographical traversing order) is evaluated for contribution with the current candidate subset. When some

of the remaining attributes do not contribute to the current candidate subset, they are excluded from subse-

quent evaluations over supersets of the current candidate. CT EXT, on the other hand, strictly follows the

lexicographical order, and may evaluate a non contributing attribute several times. However, this advantage

is reduced for matrices with a very low density of 1’s, where the probability of finding non contributing

attributes is lower.
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Figure 9: Average runtime.

Another important peculiarity that we notice from Figures 6-9 is an increasing runtime reduction of

RSDM over CT EXT, regarding the number of rows in the SDM . This trend is because the recursive

nature of RSDM requires a complex memory handling to keep the cumulative mask of evaluated candidates.

CT EXT, on the other hand, uses a simple table to this end; which is indexed by the current evaluated

attribute. As a result, RSDM requires a larger number of operations for each candidate evaluation, but these

extra operations are independent of the SDM dimensions. With the increase of the number of rows, the cost

of evaluating a single candidate is greater. Thus, for matrices with a larger number of rows, the improvement

of evaluating less candidates becomes significant in relation to the cost of the extra operations.
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Paired one-sided t-test

data: CT EXT runtime and RSDM runtime

t = 25.5347, df = 251, p-value < 2.2e-16

alternative hypothesis: true difference in means is greater than 0

95 percent confidence interval:

16512.34ms Inf

sample estimates:

mean of the differences

17653.75ms

Figure 10: R output for the t-test of mean CT EXT and RSDM runtime.

From Figures 7 and 8, we propose to apply a one-sided t-test to assess the relative performance of

RSDM over CT EXT in low and medium density matrices with more than 1000 rows. We selected from

our original 380 matrices, the 252 SDMs having these characteristics. Our null hypothesis is: there is no

difference between the RSDM and CT EXT runtime for SDMs with density between 0.3 and 0.5, and more

than 1000 rows; and our alternative hypothesis: the runtime of CT EXT is higher than the runtime of RSDM

for SDMs with density between 0.3 and 0.5, and more than 1000 rows. The output from the R4 software

(Figure 10) supports the alternative hypothesis beyond a 95% confidence interval.

Based on this result, we can conclude that RSDM is faster than CT EXT for matrices with more than

1000 rows and density between 0.3 and 0.5.

5.4. A New Algorithm for Reduct Computation Based on the Gap Elimination and Contribution

In this subsection we propose a new algorithm based on the Gap elimination and Contribution, using the

Simplified Discernibility Matrix (GCSDM), for computing all the reducts in a dataset. The main difference

between the algorithm introduced in this section and CT EXT is the gap elimination; which leads to a great

runtime reduction as we will show afterwards. LEX and fast-BR algorithms also use gap elimination but

they are based on the concept of exclusion (Lias-Rodrı́guez & Sanchez-Diaz, 2013); which implies several

iterations for evaluating each candidate. GCSDM, on the other hand, is based on the concept of contribution

(as CT EXT), which allows a simpler candidate evaluation. The concept of exclusion is used in GCSDM,

over the identified super-reducts, to verify the irreducible condition.

5.4.1. Concepts for GCSDM

The concept of gap was first introduced by Santiesteban & Pons (2003) for the LEX algorithm, as shown

in the definition 3.

Definition 3. Let L ⊆ R be a subset of attributes from a dataset, such that L = {cj0 , ..., cjs} and cj0 <
· · · < cjs according to their order in the dataset. The gap of L is the attribute cp ∈ L with j0 ≤ p < js such

that p = max(jq|cjq , cjq+1
∈ L ∧ jq+1 6= jq + 1).

4http://www.r-project.org
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In other words, the gap is the attribute in L with the highest index such that its consecutive attribute in L
is not its consecutive attribute in SDM .

Table 11: A sorted Simplified Discernibility Matrix

c0 c1 c2 c3 c4 c5 c6
1 0 0 0 0 0 0

0 1 0 1 0 0 0

0 0 0 0 0 0 1

0 0 1 0 1 0 0

0 0 0 0 0 1 0

Lets take for example the simplified discernibility matrix from Table 11:

{c0, c1, c2, c3} there is no gap
{c0, c1, c2, c5, c6} the gap is c2
{c0, c1, c2, c4, c6} the gap is c4
{c0, c1, c4, c5, c6} the gap is c1

The gap elimination is supported by the proposition 3 (Santiesteban & Pons, 2003). In order to clarify

the basis of the gap elimination we show the lexicographical traversing order for a SDM with three attributes

(columns):

{c0}, {c0, c1}, {c0, c1, c2}, {c0, c2}, {c1}, {c1, c2}, {c2}

Proposition 3. Let L ⊆ R be a reduct, such that L = {cj0 , ..., cjs}, cj0 < · · · < cjs and cjs is the last

attribute in SDM. If there is a gap cp in L, and L′ = {cj0 , ..., cjk , cp+1}, j0 < · · · < jk <= p − 1; then, no

attribute subset between L and L′ (following the lexicographical order) is a reduct.

From the proposition 3 we have the following corollary; which is relevant to GCSDM in order to avoid

other unnecessary evaluations.

Corollary 1. Let L ⊆ R be a non super-reduct, such that L = {cj0 , ..., cjs}, cj0 < ... < cjs and cjs is the

last attribute in SDM. If there is a gap cp in L, and L′ = {cj0 , ..., cjk , cp+1}, j0 < ... < jk <= p − 1; then,

no attribute subset between L and L′ (following the lexicographical order) is a reduct.

In Table 12 we show a partial execution of CT EXT over the SDM of Table 11 to illustrate the gap

elimination. The first 17 evaluated candidates out of 41, are presented along with their evaluation. For this

particular case, GCSDM evaluates only 23 candidates for a runtime reduction above the 40%. Candidates of

iterations 7 and 12 are reducts, both including the last attribute in SDM (c6). Candidates of iterations 8, 13,

14, 15 and 16 are proper subsets of reducts, as indicated by the proposition 3, and they cannot be a reduct.

Thus, the evaluation of shadowed candidates in Table 12 is unnecessary.

In order to determine whether a super-reduct is a reduct (verifying the irreducible condition) the exclusion

mask, introduced by Lias-Rodrı́guez & Pons-Porrata (2009), plays a fundamental role.
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Table 12: Partial execution of CT EXT over the SDM of Table 11. The evaluation of a candidate is labelled as C - the added

attribute contributes, NC - the added attribute does not contribute, R - the candidate is a reduct, or NSR - the last attribute is reached

and the candidate is not a super-reduct.

Iter Candidate Evaluation Iter Candidate Evaluation

1 {c0} C 10 {c0, c1, c4} C

2 {c0, c1} C 11 {c0, c1, c4, c5} C

3 {c0, c1, c2} C 12 {c0, c1, c4, c5, c6}* R

4 {c0, c1, c2, c3} NC 13 {c0, c1, c4, c6} NSR

5 {c0, c1, c2, c4} NC 14 {c0, c1, c5} C

6 {c0, c1, c2, c5} C 15 {c0, c1, c5, c6} NSR

7 {c0, c1, c2, c5, c6}* R 16 {c0, c1, c6} NSR

8 {c0, c1, c2, c6} NSR 17 {c0, c2} C

9 {c0, c1, c3} NC · · · · · · · · ·

Definition 4. Let L ⊆ R be a subset of attributes from a dataset. We call exclusion mask of L, denoted as

emL, to the binary word in which the ith bit is 1 if the ith row in SDM has a 1 in only one column of those

columns corresponding to attributes in L, and it is 0 otherwise.

For instance, from the SDM in Table 11 we have:

em{c0,c1,c2} = (1, 1, 0, 1, 0)

em{c0,c1,c2,c3} = (1, 0, 0, 1, 0)

em{c0,c1,c2,c3,c4} = (1, 0, 0, 0, 0)

Lias-Rodrı́guez & Sanchez-Diaz (2013) introduced the following proposition to support the cumulative

computation of the exclusion mask.

Proposition 4. Let L ⊆ R be a subset of attributes from a dataset and c /∈ L an attribute of SDM . The

exclusion mask of L ∪ {c} is calculated as follows:

emL∪{c} = (emL ∧ ¬cmc) ∨ (¬cmL ∧ cmc)

where cm refers to the cumulative mask.

Finally, they stated and proved the following proposition.

Proposition 5. Let L ⊆ R be a subset of attributes from a dataset and c /∈ L an attribute of SDM . If

∃ci ∈ L such that emL∪{c} ∧ cmci = (0, ..., 0). Then, c does not form a reduct with L.

5.4.2. The GCSDM Algorithm

The first step in the GCSDM algorithm consist in sorting the SDM in the same way as we did for

RSDM. The pseudocode for GCSDM is shown in Algorithm 3. Unlike RSDM, this algorithm returns only

the set of all reducts.
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We start with an empty base subset B and the position of the first attribute in c5. Then we assign a null

vector to the cumulative mask (cmB) for B = ∅ or retrieve its calculated value for B 6= ∅ (lines 4-7). CM
stores the calculated cumulative masks, indexed by the last attribute in B. The function getLast(B) returns

the last attribute in B. In the line 8, we update the cumulative mask and in the line 10 we evaluate the

contribution of c to B. The cumulative mask of an attribute cmc has the same meaning as in RSDM. If the

current attribute c contributes, we evaluate the super-reduct condition on B∪{c} (line 12). For super-reducts,

we use the proposition 4 to compute the exclusion mask emB∪{c} (lines 15-17) and we verify the irreducible

condition (lines 18- 22) by means of the proposition 5. At this point, the candidate evaluation is finished.

From line 25 to the end, the next candidate subset (B∪{c}) is generated. LastAttribute holds the position

of the last attribute in SDM . If the last attribute is reached, we check if the current candidate is a reduct

or it is not a super-reduct, to eliminate the gap (lines 26-32). If the last attribute is reached but the current

candidate is a super-reduct, the last attribute in B is removed (line 34). If the last attribute is not reached

yet, there are two possibilities. The current candidate is a super-reduct or the current attribute c does not

contribute to B; then we must replace c by the next attribute in SDM (line 37). The attribute c contributes

to B and the current candidate is not a super-reduct; then the current attribute is added to B (line 39) and the

next attribute in SDM is loaded to c (line 40). The algorithm finishes when the column corresponding to

the first attribute in the current candidate has a 0 in the first row.

In Table 13 we show an execution example of GCSDM over the SDM from Table 11. The columns

labelled C, SR and R represent the result of the candidate evaluation on Contribution, Super-Reduct and

Reduct conditions, respectively. Notice that the gap elimination occurs after candidates of iterations 7, 11,

16, 23 (reducts) and 19 (not super-reduct).

Alba-Cabrera et al. (2014) pointed out that CT EXT has a surprisingly low performance over identity

matrices. In fact; CT EXT, for this kind of matrices, traverses the complete power set of attribute combina-

tions. The introduction of the gap elimination solves this drawback in such a way that a minimum number

of candidate verifications is required for this kind of matrices.

5.4.3. Evaluation and Discussion

In order to evaluate the performance of GCSDM, we present a comparative analysis of different algo-

rithms over synthetically generated simplified discernibility matrices (SDMs). For this experiment, we

selected CT EXT and fastBR, reported in the literature as the fastest algorithms for typical testor compu-

tation, in addition to our two proposals. Algorithms for computing all reducts such as RGonCRS (Wang,

2007) and that proposed in (Starzyk et al., 2000) were not included since they showed a lower performance

in our preliminary experiments.

This experiment was done over 57 randomly generated SDMs. The density of 1’s in the SDM and

the standard deviation of the density of 1’s in the rows of the SDM are shown in the Figures 11 and 12

respectively. The selected algorithms (CT EXT, fastBR, RSDM and GCSDM) were applied over every

matrix. Each combination was executed three times and the runtime is estimated using the fastest execution.

The execution order was randomized to control the runtime bias due to the operating system load, as we did

in the subsection 5.3. All experiments were run on a G1620 Intel processor at 2.7GHz with 2GB in RAM

over a GNU/Linux operating system.

5Here we abuse of notation by using c for both an attribute and a number denoting its position in SDM
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Algorithm 3 GCSDM algorithm for computing all reducts

Input: Sorted SDM
Output: RR - set of all reducts

1: B ⇐ ∅, RR⇐ ∅, c⇐ 0
2: while not done do

3: reduct⇐ False, superReduct⇐ False, contributes⇐ False
4: if B = ∅ then

5: cmB ⇐ (0, ..., 0)
6: else

7: cmB ⇐ CM [getLast(B)]

8: cmB∪{c} ⇐ cmB ∨ cmc

9: CM [c]⇐ cmB∪{c}

10: if cmB∪{c} 6= cmB then

11: contributes⇐ True
12: if cmB∪{c} = (1, ..., 1) then

13: superReduct⇐ True
14: emB∪{c} ⇐ (0, ..., 0), cm⇐ (0, ..., 0)
15: for all x ∈ B ∪ {c} do

16: emB∪{c} ⇐ (emB∪{c} ∧ ¬cmx) ∨ (¬cm ∧ cmx)
17: cm⇐ CM [x]

18: reduct⇐ True
19: for all x ∈ B do

20: if emB∪{c} ∧ cmx = (0, ..., 0) then

21: reduct⇐ False
22: break

23: if reduct then

24: RR⇐ RR ∪ {B ∪ {c}}

25: if c =LastAttribute then ⊲ Reached the last column of the binary SDM
26: if reduct or not superReduct then ⊲ Eliminate existing gap

27: last⇐ c
28: while getLast(B) = (last− 1) do

29: last⇐ getLast(B)
30: B ⇐ B \ last
31: if |B| = 1 then

32: break

33: c⇐ getLast(B) + 1
34: B ⇐ B \ getLast(B)
35: else

36: if not contributes or superReduct then

37: c⇐ c+ 1

38: if contributes and not superReduct then

39: B ⇐ B ∪ c
40: c⇐ c+ 1

41: if B = ∅ and cmc[0] = 0 then ⊲ First attribute has a 0 in the first row

42: done⇐ True
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Table 13: Sample Execution of GCSDM.

Iter B c B ∪ {c} C SR R Comments

1 {} 0 {c0} True False Add a new attribute.

2 {c0} 1 {c0, c1} True False Add a new attribute.

3 {c0, c1} 2 {c0, c1, c2} True False Add a new attribute.

4 {c0, c1, c2} 3 {c0, c1, c2, c3} False Remove c3 (proposition 2).

5 {c0, c1, c2} 4 {c0, c1, c2, c4} False Remove c4 (proposition 2).

6 {c0, c1, c2} 5 {c0, c1, c2, c5} True False Add a new attribute.

7 {c0, c1, c2, c5} 6 {c0, c1, c2, c5, c6} True True True Eliminate the gap (c2).

8 {c0, c1} 3 {c0, c1, c3} False Remove c3 (proposition 2).

9 {c0, c1} 4 {c0, c1, c4} True False Add a new attribute.

10 {c0, c1, c4} 5 {c0, c1, c4, c5} True False Add a new attribute.

11 {c0, c1, c4, c5} 6 {c0, c1, c4, c5, c6} True True True Eliminate the gap (c1).

12 {c0} 2 {c0, c2} True False Add a new attribute.

13 {c0, c2} 3 {c0, c2, c3} True False Add a new attribute.

14 {c0, c2, c3} 4 {c0, c2, c3, c4} False Remove c4 (proposition 2).

15 {c0, c2, c3} 5 {c0, c2, c3, c5} True False Add a new attribute.

16 {c0, c2, c3, c5} 6 {c0, c2, c3, c5, c6} True True True Eliminate the gap (c3).

17 {c0, c2} 4 {c0, c2, c4} False Remove c4 (proposition 2).

18 {c0, c2} 5 {c0, c2, c5} True False Add a new attribute.

19 {c0, c2, c5} 6 {c0, c2, c5, c6} True False Eliminate the gap (c2).

20 {c0} 3 {c0, c3} True False Add a new attribute.

21 {c0, c3} 4 {c0, c3, c4} True False Add a new attribute.

22 {c0, c3, c4} 5 {c0, c3, c4, c5} True False Add a new attribute.

23 {c0, c3, c4, c5} 6 {c0, c3, c4, c5, c6} True True True Eliminate the gap (c0).

24 {} 1 {c1} Algorithm finishes because c1 has a 0 in the first row of SDM (line 41)

In order to obtain the desired density and standard deviation of density in rows, we used the matrix

generator described in subsection 5.2.2. We control the maximum and minimum number of 1’s in a randomly

generated row. In this way, the desired density is computed as the mean number of 1’s in a row, divided by

the number of attributes (columns). Keeping constant this central value, we can modify at the same time

the maximum and minimum number of allowed 1’s in a row to control the standard deviation. For each

desired pair of values (density and standard deviation), three different matrices were generated. A total of 57

matrices with 30 columns and 2000 rows were generated.

Figure 13 shows a scatter graph of the runtime as a function of the density of 1’s in the SDM . The

runtime is taken from the fastest algorithm for each case. The dots are grouped by the best performing

(fastest) algorithm for that particular matrix as shown in the legend of the figure. There can be identified

three distinct groups of matrices by their density:

• Low density matrices: density < 0.3.

• Medium density matrices: 0.3 < density < 0.7.

• High density matrices: density > 0.7.

The fastest algorithm for low density matrices is GCSDM, fastBR was the fastest for medium density ma-

trices and RSDM outperforms the other algorithms in most of the high density matrices. The fact that high
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for all SDMs under study.

density SDMs do not constitute a complex computational task for reduct computation is clearly visible in

Figure 13. Notice that CT EXT was never the best performing algorithm while fastBR was the fastest in

most matrices.

Since all matrices for this experiment have the same dimensions, we can say that low density matrices

showed a relatively high complexity. For this reason, the apparent fact that GCSDM outperforms the other

algorithms for this kind of matrices, deserves special attention. On the other hand, the result of RSDM on

high density matrices seems less important.

Figure 14 shows a scatter graph of the runtime as a function of the standard deviation of the density of 1’s

in the rows of the SDM . As it can be seen, there is no clear relationship between the runtime of the fastest

algorithm and the standard deviation of density. Notice (combining information from Figures 13 and 14)

that both, low and high density matrices are related to low values of the standard deviation. In fact, it is not

possible to increase the standard deviation in the extreme values of density.

Figure 15 shows a scatter graph of the runtime as a function of the number of reducts in the SDM .

There can be seen a positive correlation between these two variables. This is a natural trend, since the time

complexity is at least as high as the space complexity; which exceeds the size of the solution. For high

density matrices, there are a low number of reducts which partially explains their lower computational cost

(see Figure 15).

Figure 16 shows a scatter graph of the runtime of CT EXT vs. GCSDM for the SDMs used in this

experiment. Although GCSDM outperforms CT EXT in most cases. Based on the evidence of Figure 16,

we proposed a one-sided t-test to evaluate the overall performance of GCSDM over CT EXT. Our null

hypothesis is: there is no difference between the GCSDM and CT EXT runtime. As alternative hypothesis

we have: the runtime of CT EXT is higher than the runtime of GCSDM. The output from the R software

(Figure 17) supports the alternative hypothesis beyond a 95% confidence interval.
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Figure 13: Fastest algorithm runtime vs. density of 1’s for all

SDMs under study.
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Figure 14: Fastest algorithm runtime vs. standard deviation of

density in rows for all SDMs under study.

In order to evaluate the performance improvement of GCSDM over fastBR, which is the fastest algorithm

reported in the literature, we present a new experiment. A total of 83 low density matrices, with 30 columns,

was generated using the same procedure above described. This time, we generated SDMs with 1000 rows.

We evaluated the runtime of reduct computation over all matrices using fastBR and GCSDM. Again we ran

three execution of each possible combination in a randomized experiment.

Figure 18 shows the runtime as a function of the density of 1’s in the SDM . There can be seen two

interesting facts. First, there is a well defined line delimiting those SDMs for which GCSDM is faster than

fastBR (densities under 0.3). Second, the runtime of GCSDM increases monotonically with the increase of

the density of 1’s in the SDM .

In Figure 19 we show the runtime rate between fastBR and GCSDM; where values above 1 mean a

runtime improvement of GCSDM over fastBR. For lower densities we have up to two orders of magnitude

rate. We found an exponential relationship between this rate and the density of the SDM . Notice that the

vertical axis in Figure 19 is logarithmic.

In order to explain this behaviour we must go deeply into the main difference between fastBR and

GCSDM. In GCSDM we compute the exclusion mask and evaluate the proposition 5 only for those candi-

dates proven as super-reducts, in order to verify them as reducts. In fastBR, on the other hand, the propo-

sition 5 is evaluated for each contributing candidate. As a result, fastBR evaluates less candidates than

GCSDM but at a higher cost per candidate. The attribute exclusion occurs when there is at least one column,

in the sub-matrix of SDM formed by those attributes in the current candidate, that can be removed without

increasing the number of zero rows in this sub-matrix. The exclusion is more frequent in matrices with a

higher density of 1’s, as it can be inferred from Figure 19.

Lets take for instance the extreme case of the identity matrix where there is no exclusion at all, since every

attribute is indispensable to form a reduct. For this SDM , GCSDM needs to evaluate as many candidates as
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Figure 16: CT EXT runtime vs. GCSDM runtime.

Paired one-sided t-test

data: CT EXT runtime and GCSDM runtime

t = 3.3, df = 56, p-value = 0.0008428

alternative hypothesis: true difference in means is greater than 0

95 percent confidence interval:

6976.147ms Inf

sample estimates:

mean of the differences

14145.54ms

Figure 17: R output for the t-test of mean CT EXT and GCSDM runtime.

fastBR but makes a single verification for exclusion with the set of all attributes. On the other hand, fastBR

verifies the exclusion for each candidate, which leads to a higher computational cost.

We used a one-sided t-test to evaluate the relative performance of GCSDM over fastBR in low density

matrices. We selected the 62 SDMs having a density of 1’s lower than 0.3, from our original 83 matrices.

As null hypothesis we have: there is no difference between the GCSDM and fastBR runtime for SDMs with

density of 1’s lower than 0.3. As alternative hypothesis we have: the runtime of fastBR is higher than the

runtime of GCSDM for SDMs with density of 1’s lower than 0.3. The following output from the R software

(Figure 20) supports the alternative hypothesis beyond a 95% confidence interval.
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1’s for all SDMs under study.

Paired one-sided t-test

data: fastBR runtime and GCSDM runtime

t = 11.0838, df = 61, p-value < 2.2e-16

alternative hypothesis: true difference in means is greater than 0

95 percent confidence interval:

75124.33ms Inf

sample estimates:

mean of the differences

88453.32ms

Figure 20: R output for the t-test of mean fastBR and GCSDM runtime.

6. Conclusions

This PhD research proposal is focused on the problem of computing all the reducts and its related prob-

lem of computing shortest reducts of an information system. These are problems with exponential complex-

ity which are actively studied. The theoretical bases were introduced to provide a unique nomenclature for

the document and ensure that it is self contained. We present a revision of the related work to show the

most relevant approaches to the problem solution and based on this review we highlight the need for further

research in this area. Then, the PhD research proposal is introduced; including justification and motivation,

research questions, our research objectives, and the methodology that will guide our research.

As preliminary results, we we developed a hardware module for eliminating all non typical testors on the

hardware component; reducing the amount of data that must be transferred to the PC and eliminating the final

filtering. This hardware module is applicable to any algorithm for computing typical testors implemented on

FPGA devices. This result was published in the memories of an international conference on reconfigurable
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computing. Our second preliminary result is a new hardware architecture of the CT EXT algorithm (which

is one of the most recent and fastest algorithms reported in the literature) for computing all the typical

testors. Our proposal traverses the search space in a different order than previous works, which evaluates

less candidate subsets than previous architectures, resulting in shorter runtime. This result has been reported

in the journal of Expert Systems With Applications. Additionally, we proposed two new algorithms for

computing all the reducts, which are faster than existing algorithms for some kinds of datasets. RSDM was

the fastest algorithm for SDMs with density above 0.7 while GCSDM outperforms the rest of the evaluated

algorithms in SDMs with density under 0.3. These results will be reported in a congress or a journal

specialized in Rough Set Theory.

Throughout our preliminary work, we covered most of the first four points in our proposed methodology,

related to algorithms for computing all reducts of an information system. Finally, based on our prelimi-

nary results, we conclude that our objectives are reachable, in the scheduled time, following the proposed

methodology.
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Martı́nez, José Francisco, & Guzmán, Adolfo. 2001. The logical combinatorial approach to pattern recogni-

tion, an overview through selected works. Pattern Recognition, 34(4), 741–751.

Nguyen, Hung Son, & Skowron, Andrzej. 1997. Boolean Reasoning for Feature Extraction Problems. Foun-

dations of Intelligent Systems, 117–126.

Ø hrn, a. 2000. Discernibility and rough sets in medicine: tools and applications. 223.
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Luna, Javier. 2010. A fast implementation of the CT-EXT algorithm for the testor property identification.

Pages 92–103 of: LNAI 2010, vol. 6438.

Santiesteban, Y, & Pons, A. 2003. LEX: a new algorithm for the calculus of typical testors. Mathematics

Sciences Journal, 21(1), 85–95.

Skowron, Andrzej, & Rauszer, Cecylia. 1992. The discernibility matrices and functions in information

systems. Pages 331–362 of: Intelligent Decision Support. Springer.

Starzyk, Janusz, Nelson, D E, & Sturtz, Kirk. 1999. Reduct generation in information systems. Bulletin of

international rough set society, 3(May), 19–22.

Starzyk, Janusz a., Nelson, Dale E., & Sturtz, Kirk. 2000. A Mathematical Foundation for Improved Reduct

Generation in Information Systems. Knowledge and Information Systems, 2(2), 131–146.

Strakowski, Tomasz, & Rybiski, Henryk. 2008. A New Approach to Distributed Algorithms for Reduct

Calculation. Transactions on Rough Sets IX, 365–378.

Tiwari, Kanchan, Kothari, Ashwin, & Shah, Riddhi. 2013. FPGA Implementation of a Reduct Generation

Algorithm based on Rough Set Theory. International Journal of Advanced Electrical and Electronics

Engineering (IJAEEE), 2(6).

Tiwari, Kanchan Shailendra. 2014. Design and Implementation of Rough Set Algorithms on FPGA : A

Survey. 3(9), 14–23.

42



Tiwari, K.S., & Kothari, A.G. 2011. Architecture and Implementation of Attribute Reduction Algorithm

Using Binary Discernibility Matrix. Pages 212–216 of: 2011 International Conference on Computational

Intelligence and Communication Networks.

Tiwari, KS, Kothari, AG, & Keskar, AG. 2012. Reduct generation from binary discernibility matrix: an

hardware approach. International Journal of Future Computer and Communication, 1(3), 270–272.

Wang, Jue, & Wang, Ju. 2001. Reduction algorithms based on discernibility matrix: the ordered attributes

method. Journal of computer science and technology, 16(6), 489–504.

Wang, Pai-Chou. 2007. Highly Scalable Rough Set Reducts Generation. Journal of Information Science and

Engineering, 4(23), 1281–1298.

Wang, Xiangyang, Yang, Jie, Teng, Xiaolong, Xia, Weijun, & Jensen, Richard. 2007. Feature selection based

on rough sets and particle swarm optimization. Pattern Recognition Letters, 28(4), 459–471.

Wroblewski, Jakub. 1995. Finding minimal reducts using genetic algorithms. Pages 186–189 of: Procced-

ings of the second annual join conference on infromation science.

Wroblewski, Jakub. 1998. A parallel algorithm for knowledge discovery system. Pages 228–230 of: Proc

PARELEC.

Yang, Ping Yang Ping, Li, Jisheng Li Jisheng, & Huang, Yongxuan Huang Yongxuan. 2008. An Attribute

Reduction Algorithm by Rough Set Based on Binary Discernibility Matrix. 2008 Fifth International

Conference on Fuzzy Systems and Knowledge Discovery, 2.

Yao, Yiyu, & Zhao, Yan. 2009. Discernibility matrix simplification for constructing attribute reducts. Infor-

mation Sciences, 179(7), 867–882.

Zheng, Kai, Hu, Jie, Zhan, Zhenfei, Ma, Jin, & Qi, Jin. 2014. An enhancement for heuristic attribute

reduction algorithm in rough set. Expert Systems with Applications, 41(15), 6748–6754.

Zhong, Ning, Dong, Juzhen, & Ohsuga, Setsuo. 2001. Using rough sets with heuristics for feature selection.

Journal of intelligent information systems, 16(3), 199–214.

43


	Introduction
	Basic Concepts
	Information System
	Positive Region
	Reducts and Core
	Discernibility Matrix and Discernibility Function
	Binary Discernibility Matrix
	Simplified Discernibility Matrix

	Related Work
	Algorithms Finding a Single Reduct
	Algorithms for all Reducts and all Typical Testors Computation
	Parallel Accelerations
	Concluding Remarks

	Research Proposal
	Justification and Motivation
	Research Questions
	Research Objectives
	Expected Contributions
	Methodology
	Schedule

	Preliminary Results
	A Hardware Architecture for Filtering Typical Testors
	Evaluation and Discussion

	A Hardware Architecture based the CT_EXT Algorithm
	CT_EXT algorithm
	Evaluation and Discussion

	A New Recursive Algorithm for Reduct Computation
	Concepts for RSDM
	The RSDM Algorithm
	Evaluation and Discussion

	A New Algorithm for Reduct Computation Based on the Gap Elimination and Contribution
	Concepts for GCSDM
	The GCSDM Algorithm
	Evaluation and Discussion


	Conclusions

